期刊文献+

广义回归神经网络的改进及在延迟焦化建模中的应用 被引量:14

GENERALIZED REGRESSION NEURAL NETWORK AND ITS APPLICATION TO DELAYED COKING PROCESS
下载PDF
导出
摘要 广义回归神经网络 (GRNN)具有明确的概率意义 ,其参数大多能自动确定 ,仅光滑因子参数需优化估值 .采用优进遗传算法 (EGA) ,将确定性与随机性寻优操作相融合 ,实现了高效全局搜优 ,它所基于的优进策略包括设计Powell寻优算子、改进交叉算子、自适应地调整交叉率和变异率等 .以推广能力作为优化目标 ,所建的GRNN有很强的非线性拟合能力和优良的预报性能 ,将其成功地为延迟焦化过程建模 ,与径向基网络(RBFN)等相比 ,显示了明显的优势 . This paper describes an optimal generalized regression neural network(GRNN) in which training of the network is optimization of the smoothing factors. A eugenic evolution strategy genetic algorithm(EGA), which integrates random evolution operation and deterministic optimization operation, is adopted in this paper to realize global optimization in high efficiency. The eugenic evolution strategies used in this paper include adding new deterministic Powell searching operation, improving crossover operation, modifying adaptive crossover probability and mutation probability, and others. The GRNN-EGA, which is based on EGA and provides powerful capacity in non-linear modeling and predicting, is applied to modeling delayed coking process to predict the productivity of coke. The GRNN-EGA prediction results are compared to those obtained with the radial basis function network(RBFN) and the GRNN-Powell, which is based on Powell optimization. The GRNN-EGA model has better prediction performance and stability as compared with the latter two models.
出处 《化工学报》 EI CAS CSCD 北大核心 2004年第4期608-612,共5页 CIESC Journal
基金 国家自然科学基金资助项目 (No 2 0 0 760 41)~~
关键词 广义回归神经网络 优进策略 遗传算法 延迟焦化 非线性建模 Genetic algorithms Mathematical models Neural networks
  • 相关文献

参考文献13

  • 1Hou Xianglin(侯祥麟).Chinese Petroleum Refining Technology(中国炼油技术).Beijing:China Petrochemical Press,1991.12
  • 2Nadaraya E A.On Estimating Regression.Theory of Probability and Its Applications,1964,9:141-142
  • 3Specht D F.A General Regression Neural Network.IEEE Transactions on Neural Networks,1991,2(6):568-576
  • 4Schioler H,Hartmann U.Mapping Neural Network Derived from the Parzen Window Estimator.Neural Networks,1992,5:903-909
  • 5Parzen E.An Estimation of a Probability Density Function and Mode.Ann. Math. Stat.,1962,33:1065-1076
  • 6Scott D W.Multivariate Density Estimation: Theory, Practice and Visualization.New York:Wiley Inc.,1992
  • 7Tomandl D, Schober A.A Modified General Regression Neural Network with New,Efficient Training Algorithms as a Robust 'Black Box'-Tool for Data.Neural Network,2001,14:1023-1034
  • 8Chtioui Y, Panigrahi S, Francl L.A Generalized Regression Neural Network and Its Application for Leaf Wetness Prediction to Forecast Plant Disease.Chemometrics and Intelligent Laboratory Systems,1999,48:47-58
  • 9Fang Qiang(方强),Chen Dezhao(陈德钊),Yu Huanjun(俞欢军),Wu Xiaohua(吴晓华).Differential Evolution Algorithm Based on Eugenic Strategy and Its Application to Chemical Engineering.Journal of Chemical Industry and Engineer
  • 10Chen S, Cowan C F N, Grant P M.Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks.IEEE Transactions on Neural Network,1991,2(2):302-308

同被引文献150

引证文献14

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部