期刊文献+

使用优化的CIOS算法的模运算处理器 被引量:1

Modular arithmetic processor based on an optimized CIOS algorithm
原文传递
导出
摘要 为以较小的面积代价实现RSA公钥密码算法及其他一些算法所需的求模、模加、模乘、模幂等运算,该文设计了一种可作为协处理器使用的模运算处理器。运算数据的长度可变,范围从256b到2048b。采用优化的CIOS(coarselyintegratedoperatedscanning)算法以加快模乘的速度。充分的流水线设计使得时钟频率可达60MHz,在该工作频率下完成1024b模幂的时间为57ms。除RAM外的核心电路仅含16000等效门,在0.35μmCMOS工艺条件下,包含RAM的电路总面积仅为3.31mm2。该处理器适合用于嵌入式系统,尤其是面积局限性高的系统。 An area efficient modular arithmetic processor was developed that is capable of performing RSA public-key cryptography and other modular arithmetic operations as a coprocessor. The operands can vary in size from 256 to 2 048 bit. An optimized coarsely integrated operated scanning (CIOS) algorithm was used to speed up the modular multiplication. The fully pipelined architecture has a maximum clock rate of 60 MHz which takes 57 ms to complete a 1 024 bit modular exponentiation. The core circuit without RAM contains 16 000 gates and the whole area measures only 3.31 mm^2 using 0.35 μm CMOS technology. The processor is suitable for embedded systems, especially in area-constrained environments.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第4期538-541,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家"八六三"高技术项目(2002AA141040)
关键词 CIOS算法 模运算处理器 公钥密码算法 RSA MONTGOMERY模乘 微程序 public-key cryptography RSA modular arithmetic optimized coarsely integrated operated scanning (CIOS) Montgomery multiplication microcode
  • 相关文献

参考文献6

  • 1Rivest R L, Shamir A, Adleman L. A method for obtaining digital signatures and public-key cryptosystems [J].Communications of the ACM, 1978, 21(2): 120 - 126.
  • 2Kaya Koc C, Acar T, Kaliski B S Jr. Analyzing and comparing Montgomery multiplication algorithms [J]. IEEE Micro, 1996, 16(3): 26-33.
  • 3杨骞,吴行军,周润德,鲁瑞兵.嵌入式RSA加解密处理器[J].清华大学学报(自然科学版),2001,41(7):110-113. 被引量:2
  • 4Dusse S R, Kaliski B S Jr. A cryptographic library for the Motorola DSP56000 [A]. Advances in CryptologyEurocrypt 90, Lecture Notes in Computer Sience [C]. NewYork: Springer-Verlag, 1990. 230- 244.
  • 5Kwon Tack-Won, You Chang-Seok, Heo Won-Seok, et al. Two implementation methods of a 1024-bit RSAcryptoprocessor based on modified Montgomery algorithm[A]. IEEE International Symposium on Circuits and Systems[C]. Sydney, Australia: IEEE, 2001. 650- 653.
  • 6Grossschadl J. The Chinese remainder theorem and its application in a high-speed RSA crypto chip [A]. 16th Annual Conference on Computer Security Applications [C]. New Orleans, USA, 2000. 384 - 393.

二级参考文献4

  • 1盖伟新.大数模幂乘快速算法的研究及VLSI实现[M].北京:清华大学,1997..
  • 2张武健,清华大学学报,1999年,39卷,增刊,13页
  • 3盖伟新,学位论文,1997年
  • 4张武健,梁松海,周润德.嵌入式Montgomery模乘器的实现[J].清华大学学报(自然科学版),1999,39(S1):15-18. 被引量:2

共引文献1

同被引文献3

  • 1Ors S B, Batina L, Preneel B, et al. Hardware Implementation of an Elliptic Curve Processor over GF(p)[C]//Proc. of the 14th IEEE International Conference on Application-specific Systems,Architectures and Processors. [S. l.]: IEEE Press, 2003-06.
  • 2Laue R, Huss S A. A Novel Memory Architecture for Elliptic Curve Cryptography with Parallel Modular Multipliers Field Programmable Technology[C]//Proc. of IEEE Computer Society Annual Symposium on VLSI. Montpellier, France: [s. n.], 2006.
  • 3Kaya Koc C, Acar T, Kaliski B S. Analyzing and Comparing Montgomery Multiplication Algorithms[J]. IEEE Micro, 1996, 16(3): 26-33.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部