期刊文献+

一类Flow Shop调度问题最优调度区间摄动鲁棒性 被引量:4

Interval perturbation robustness of optimal schedules for a class of Flow Shop problems
下载PDF
导出
摘要 调度的鲁棒性是调度应用中的一个重要问题.本文从最优调度不变的角度研究了调度的鲁棒性问题.首先定义了最优调度的区间摄动鲁棒性,即当问题中某些参数在各自的区间上变化时最优调度保持不变的性质.然后对比例FlowShop调度问题(任给一个工件它在各台机器上的加工时间都相同)进行了研究.通过一个引理我们证明了本文的结果,该引理指出了r个参数的大小次序与它们的变化区间的相交关系之间的联系.本文的结果是目标函数为完成时间总和时在加工时间扰动下最优调度具有区间摄动鲁棒性的三个充分必要条件,目标函数为最大拖期时间时及目标函数为拖后工件个数时在加工时间和/或交付期扰动下最优调度具有区间摄动鲁棒性的若干充分条件.这些结果与调度在一个由变化参数构成的超矩形的一些顶点上的最优性有关.文中给出了使用这些结果的例子. The robustness of schedules is an important problem in practice. It was studied in the angle that the optimal schedules do not change. Firstly the interval perturbation robustness of an optimal schedule was defined, that was the property that an optimal schedule keeps the same when some of the parameters in the scheduling problem vary in some intervals. Then the interval perturbation robustness of an optimal schedule for proportionate flow shop, where the processing time of any given job on every machine is the same, was studied. Form a lemma that gives the relationship between the order of r parameters and the overlaps between each two of the intervals in which these parameters vary, the results were proved. The results are three necessary and sufficient conditions for the objective of total completion time and some sufficient conditions for the objective of maximum lateness time or for the objective of the number of tardy jobs under which an optimal schedule is of interval perturbation robustness. These results relate to the optimality of a schedule at some of the vertices of a hyperrectangle consisting of the varying parameters. Some examples that showed how to use these results were given.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2004年第1期25-29,共5页 Control Theory & Applications
基金 国家攀登计划项目(970211017) 国家自然科学基金项目(69674013) 北京市青年科技骨干基金项目.
关键词 FLOW Shop调度问题 最优调度 鲁棒性 目标函数 scheduling optimization interval perturbation robustness proportionate Flow Shop
  • 相关文献

参考文献7

  • 1[1]DANIELS R L, KOUVELIS P. Robust scheduling to hedge against processing time uncertainty in single-stage production [J]. Management Science, 1995,41(2):363-376.
  • 2[2]WU S D, BYEON E, STORER R H. A graph-theoretic decomposition of the job shop scheduling problem to achieve scheduling robustness [J]. Operations Research, 1999,47(2):113-124.
  • 3[3]LEON V J, WU S D, STORER R H. Robust measure and robust scheduling for job shops [J]. IIE Transations, 1994, 26(5):32-43.
  • 4[4]SOTSKOV Y, SOTSKOVA N Y, WERNER F. Stability of an optimal schedule in a job shop [J]. Omega, 1997,25(4):397-414.
  • 5[5]DANIELS R L, CARRILLO J E. β-robust scheduling for single-machine systems with uncertain processing times [J]. IIE Transactions, 1997,29(11): 997-1006.
  • 6[6]YELLIG E J, MACKULAK G T. Robust deterministic scheduling in stochastic environments: the method of capacity hedge points [J]. Int J of Production Research, 1997,35(2):369-379.
  • 7[7]JAMES R J W, BUCHANAN J T. Robustness of single machine scheduling problems to earliness and tardiness penalty errors [J]. Annals of Operational Research, 1998,76:219-232.

同被引文献52

  • 1王延斌,王刚,赵立忠,高国安.基于蚁群算法的模具制造动态调度研究[J].计算机集成制造系统,2006,12(7):1028-1036. 被引量:9
  • 2SHI L, 'OLAFSSON S. Nested partitions method global optimization[J]. Operations Research, 2000, 48(3): 309 - 407.
  • 3SHI L, 'OLAFSSON S, CHEN Q. An optimization framework for product design[J]. Management Science, 2001, 47(2): 1681 - 1692.
  • 4'OLAPSSON S, SHI L. A method for scheduling in parallel manufacturing systems with flexible resources[J]. IIE Transactions Research, 2000, 32(1): 135 - 146.
  • 5TAILLARD E D. Some efficient heuristic methods for the flow shop sequencing problem[J]. European Journal of Operation Research, 1990, 47(1): 65 - 74.
  • 6GUPTA J N D. A functional heuristic algorithm for flowshop scheduling problem[J]. Operational Research Quarterly, 1971, 22(1): 39 - 47.
  • 7WANG L, ZHENG D Z. A modified evolutionary programming for flow shop scheduling[J]. International Journal of Advanced Manufacturing Technology, 2003, 22(7/8): 522 - 527.
  • 8SHI G Y. A genetic algorithm applied to a class job shop scheduling problem[J]. International Journal of System Science, 1997, 28( 1): 25 - 32.
  • 9SHI L, 'OLAFSSON S, CHEN Q. A new hybrid optimization algorithm[J]. Computer & Industrial Engineering, 1999, 36(1): 409- 426.
  • 10'OLAFSSON S, SHI L. Ordinal comparison via the nested partitions method[J]. Discrete Event Dynamic Systems, 2002, 12(1): 211 - 239.

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部