期刊文献+

基于Delta算子的统一代数Lyapunov方程解的上下界 被引量:5

Matrix bounds for the solution of the unified algebraic Lyapunov equation using Delta operator
下载PDF
导出
摘要 基于Delta算子描述,统一研究了连续代数Lyapunov方程(CALE)和离散代数Lyapunov方程(DALE)的定界估计问题.采用矩阵不等式方法,给出了统一的代数Lyapunov方程(UALE)解矩阵的上下界估计,在极限情形下可分别得到CALE和DALE的估计结果.计算实例表明了本文方法的有效性. The estimation problem of matrix bounds for the continuous algebraic Lyapunov equation (CALE) and the discrete algebraic Lyapunov equation (DALE) could be considered by unified approach using delta operator. The upper and lower matrix bounds for the solution of the unified algebraic Lyapunov equation (UALE) are presented in terms of matrix inequality approach, and the obtained bounds reduce to existing ones for the continuous and discrete Lyapunov equations in the limiting cases. The proposed results are illustrated through an example.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2004年第1期94-96,共3页 Control Theory & Applications
基金 河南省自然科学基金项目(0311011600) 河南省高校青年骨干教师资助计划项目([2003]100).
关键词 连续代数Lyapunov方程 方程解 DELTA算子 定界估计 控制理论 Lyapunov equation Delta operator matrix bound
  • 相关文献

参考文献7

  • 1[1]KWON W H, MOON Y S, AHN S C. Bounds in algebraic Riccati and Lyapunov equations: a survey and some new results [J]. Int J Control, 1996, 64(3): 377-389.
  • 2[2]MIDDLETON R H, GOODWIN G C. Improves finite word length characteristics in digital control using Delta operator [J]. IEEE Trans on Automatic Control, 1986, 31(11): 1015-1021.
  • 3[4]MRABTI M, HMAMED A. Bounds for the solution of the Lyapunov matrix equation: a unified approach [J]. Systems & Control Letters, 1992, 18(1): 73-81.
  • 4邵锡军,杨成梧.Delta域Lyapunov矩阵方程解的研究[J].南京理工大学学报,1999,23(3):193-196. 被引量:4
  • 5[6]MORI T, KOKANE H. On solution bounds for three types of Lyapunov matrix equations: continuous, discrete and unified equations [J]. IEEE Trans on Automatic Control, 2002, 47(10): 1767-1770.
  • 6[7]SUCHOMSKI P. Numerically robust Delta-domain solutions to discrete-time Lyapunov equations [J]. Systems & Control Letters, 2002, 47(4): 319-326.
  • 7张端金,杨成梧,吴捷.Delta域Riccati方程研究:连续与离散的统一方法(英文)[J].控制理论与应用,1999,16(3):119-121. 被引量:4

二级参考文献1

共引文献6

同被引文献32

  • 1张端金,张文英,吴捷.Delta算子离散模型辨识的性能分析[J].电机与控制学报,2003,7(1):37-39. 被引量:1
  • 2Johnson C R. Matrix analysis[M]. New York :Cambridge University Press, 1985.
  • 3Zoran Gajie. Lyapunov matrix equation in system stability and control[M]. San Diego:Rutgers University Academic Press, San Diego, CA, 1995.
  • 4LEE CHIEN-HUA. New Results for the Bounds of the Solution for the Continuous Riccati and Lyapunov Equations [J]. IEEE Trans. Automat. Contr. ,1997,42:118- 123.
  • 5LEE C H. Eigenvalue Upper and Lower Bounds of the Solution for the Continuous Algebraic Matrix Ricard Equation [ J]. IEEE Trans. Automat. Contr., 1996,43 : 683 - 686.
  • 6LEE C H. Solution Bounds of the Continuous and Discrete Lyapunov Matrix Equations [J]. Journal of Optimization Theory and Application, 2004,120:559 - 578.
  • 7Kwakernaak K and Sivan R. Linear optimal control systems[J]. New York: Wiley, 1972.
  • 8N. Komaroff. Upper bounds for the eigenvalues of the solution of the discrete Lyapunov matrix equation[J]. IEEE Trans Automat Contr, 1990, 35: 468-469.
  • 9Middleton R H, Goodwin G C. Inproves finite word length characteristics in digital control using Delta ooerator[J]. IEEE Trans Automat Contr, 1986, 31: 1015-1021.
  • 10Fuzhen Zhang. The Schur complement and its applications[M]. Springer-Verlag, New York, 2005.

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部