期刊文献+

低聚芴及其衍生物吸收和发射光谱性质的量子化学研究 被引量:19

Quantum Chemical Studies of Absorption and Emission SpectrocopicProperties for Oglimeric Fluorenes and Its Derivatives
下载PDF
导出
摘要 用 DFT/ B3 LYP方法对低聚物 ( PF) 2 n和 ( PFDBO) n( n=1— 4)体系进行了全优化 ,计算得到两个系列低聚物的电离能 PI( v,a)、电子亲和势 EA( v,a)、空穴抽取能 EHP和电子抽取能 EEP等相关能量 ,并用 ZINDO和 TD-DFT方法计算其吸收光谱 ,分析了两系列总能量和 HOMO-LUMO能隙随 n递增的变化规律及对低聚物稳定性和光谱性质的影响 ,推断高聚物的发光性质 .用 CIS方法优化低聚物的 S1激发态结构并分析其与发射光谱的关系 .计算结果表明 ,这两个系列低聚物激发态结构中都有使所有骨架原子共平面的趋势 .由于插入 CH2 OCH2 ,使 PFDBO的七元环部分发生较大的扭曲 (两个苯环间成 42 .5°± 0 .5°的二面角 ) ,致使有效共轭链被破坏、能带带隙变宽、吸收发射光谱波长变短 . We have fully optimized the structures of the oligomers of (PF) 2n and (PFDBO) n (n=1—4) using DFT/B3LYP method and calculated their P I(v,a), E A(v,a), E HP , E EP . The absorption spectra data were calculated at ZINDO and TD-DFT levels of theory. We analyzed the rules to the variation of their HOMO-LUMO energy gap with n rising and how the energy gap reflected the spectral properties of the oligomers to deduce the spectral properties of their polymers. We optimized the S 1 excited geometries and studied the emission spectra. Moreover, in the excited geometries all the framework atoms in a molecule are apt to coplanar. Above all, the dramatically twisted segment of seven-membered-ring in PFDBO(dihedral angel between it′s two phenyl ring is 42.5°±0.5°), because of CH 2OCH 2 caused the conjugated backbone broken. So the energy gap of it is broader, which makes in the max absorption and emission wavelengths of PFDBO shorter than PF′s.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2004年第4期676-680,共5页 Chemical Journal of Chinese Universities
基金 国家自然科学基金 (批准号 :90 10 10 2 6 2 0 173 0 2 1) 国家重点基础研究发展规划基金 (批准号 :2 0 0 2 CB613 40 6)资助
关键词 低聚芴 衍生物 吸收光谱 发射光谱 量子化学 密度泛函理论 Oligomeric fluorenes Density functional theory Absorptive spectrum Luminescent properties
  • 相关文献

参考文献12

  • 1Burrows H. D., Seixas de Melo J., Serpa C. et al.. J Chem. Phys.[J], 2002, 285: 3-11
  • 2Wong J. E., Weaver M. S., Richardson T. et al.. Materials Science and Engineering C[J], 2002, 22: 393-400
  • 3WONG Ken-Tsung, CHIEN Yuh-Yih, Chen Ruei-Tang et al.. J. Am. Chem. Soc.[J], 2002, 124: 11 576-11 577
  • 4Sudhir Ranjan, Lin S. Y., Hwang K. C. et al.. Inorg. Chem.[J], 2003, 42: 1 248-1 255
  • 5Wohlgenannt M., Kunj Tandon, Mazumdar S. et al.. Nature[J], 2001, 409: 494-498
  • 6Curioni A., Andreoni W.. IBM J. RES. & DEV.[J], 2001, 45: 101-113
  • 7Curioni A., Mauro Boero, Andrenoni Wanda et al.. Chemical Physics Letters[J], 1998, 294: 263-271
  • 8Han Y. K., Sang Uck Lee. Chemical Physics Letters[J], 2002, 366: 9-16
  • 9James R. Sheats, Homer Antoniadis et al.. Science[J], 1996, 273: 884-888
  • 10Shuai Z., Beljonne D., Silbey R. J. et al.. Physical Review Letters[J], 2000, 84: 131-134

二级参考文献8

共引文献20

同被引文献231

引证文献19

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部