期刊文献+

持续动态压应力对实验性骨折愈合的影响 被引量:7

Effect of continuous dynamic compressive stress on femoral fractures healing in dogs
下载PDF
导出
摘要 目的 :探讨持续动态压应力环境对实验性骨折愈合的影响及机制 .方法 :对 2 5只家犬股骨干造成双侧横断截骨 ,随机选一侧天鹅记忆接骨器 (SMC)固定 ,对侧以髓内钉固定作为对照 ,分别在术后 7,1 4 ,2 1 ,2 8和 4 9d时 ,在骨折间隙内取材 ,行组织学观察及Ⅸ型胶原和骨钙素mRNA的Northernblot杂交 .结果 :组织学观察和Northernblot结果均表明 ,SMC固定下骨折间隙内愈合组织的软骨形成速度明显快于对照组 ,软骨内成骨也得以强化 .结论 AIM: To explore the effect and mechanism of continuous dynamic pressure stress on femoral fractures healing in dogs. METHODS: Bilateral femoral of 15 adult dogs were osteotomized in the middle and then 1 femur was randomly internal fixed with swan like memory connector (SMC) while the contralateral side fixed with Kuntscher intramedullary nails. Five animals in each group were sacrificed at 7, 14, 21, 28, 49 d after operation. Samples from the fracture gaps were obtained and histological and molecular biological techniques (expression of the mRNA of the cartilage specific collagen IX and osteocalcina marker for mature osteoblasts) were employed. RESULTS: In terms of histology and molecular biology, the chondrogenesis in the fracture gap continued for shorter period and the enchondral ossificassion were strengthened in fractures fixed with SMC. CONCLUSION: The persistent dynamic longitudinal pressure stress produced by SMC may contribute to the process of healing of long bone.
出处 《第四军医大学学报》 北大核心 2004年第1期41-45,共5页 Journal of the Fourth Military Medical University
关键词 骨折愈合 骨折固定术 生物力学 分子生物学 形状记忆合金 fracture healing internal fixation biomechanism molecular biology shape memory alloy
  • 相关文献

参考文献9

  • 1[3]Brighton CT, Fisher JRS Jr, Levine SE, et al. The biochemical pathway mediating the proliferative response of bone cells to a mechanical stimulus[J]. J Bone Joint Surg Am, 1996; 78: 1337-1347.
  • 2[4]Athanasiou KA, Zhu C, Lanctot DR, et al. Fundamentals of biomwchanics in tissue engineering of bone[J]. Tissue Eng, 2000; 6: 361-381.
  • 3[5]Claes L, Wolf S, Augat P. Mechanical modification of callus healing[J]. Chirurgie, 2000; 71(9):989-994.
  • 4[6]Nomura S, Takano-Yamamoto T. Molecular events caused by mechanical stress in bone[J]. Matrix Biol, 2000; 19:91-96.
  • 5[7]Iwaki A, Jingushi S, Oda Y, et al. Localization and quantification of proliferating cells during rat fracture repair: Detection of proliferating cell nuclear antigen by Immunhistochemistry[J]. J Bone Miner Res, 1997; 12:96-102.
  • 6[8]Stoffel K, Klaue K, Perren SM. Functional load of plates in fracture fixation in vivo and its correlate in bone healing[J]. Injury, 2000; 31(Suppl 2):S-B37-S-B50.
  • 7[9]Ogrgdnik PJ, Moorcroft CI, Thomas PB. A fracture movement monitoring system to aid in the assessment of fracture healing in humans[J]. Proc Inst Mech Eng [H], 2001; 215:405-414.
  • 8[10]Chao EY, Inoue N, Elias JJ, et al. Enhancement of fracture healing by mechanical and surgical intervention[J]. Clin Orthop, 1998; (355 Suppl): S163-S178.
  • 9[11]Foux A, Yeadon AJ, Uhtoff HK. Improved fracture healing with less rigid plates. A biomechanical study in dogs[J]. Clin Orthop, 1997; (339):232-245.

同被引文献73

引证文献7

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部