摘要
该文提出了一种非线性模拟系统的故障辨识方法,构造了一个基于模糊加权型推理法的模糊神经网络,利用遗传算法来训练网络连接权值、优化隶属度函数,根据训练后的网络权值可以自动提取出模糊规则,并通过仿真实验验证了该方法的有效性。
A fault identification approach for nonlinear analogue systems is presented. A fuzzy neural network is developed based on the improved fuzzy weighted reasoning method. The training of network weights and the optimization of membership functions are conducted employing genetic algorithms. Fuzzy rules can be automatically obtained according to the weights of the network. The availability of the method is examined by simulated tests.
出处
《电路与系统学报》
CSCD
2004年第2期54-57,共4页
Journal of Circuits and Systems
基金
国家自然科学基金资助项目(50277010)
高等院校博士学科点专项科研基金资助项目(20020532016)
湖南省科技计划项目(03GKY3115)
湖南省杰出青年基金项目(03JJY1010)
湖南大学撷英计划项目
关键词
模糊神经网络
参数聚类
遗传算法
故障诊断
fuzzy neural network
parameter identification
genetic algorithms
fault diagnosis