摘要
该文研究了在时间上采用2阶差分、空间上采用4阶差分的高阶FDTD(2,4)数值方法,推导出其三维差分公式,并详细分析了其数值色散特性.另外,将PML吸收边界有效地应用于微带天线的计算,并与传统FDTD(2,2)数值结果进行了对比.结果证明高阶FDTD(2,4)算法能够有效减小数值色散和相速误差,而且可以降低对计算机内存的要求,减小计算量,适用的计算频段更高.
A higher-order finite-difference time-domain (FDTD) scheme with fourth order in space is studied for the solution of the Maxwell equations in the time domain and the three dimensional fourth-order difference formulas are obtained. The numerical dispersion characteristics of the higher-order FDTD (2,4) are analyzed in detail. Perfectly matched layer (PML) is carried out effectively in the calculation of the microstrip antenna. Numerical results show that the higher-order FDTD (2,4) scheme can reduce numerical dispersion and phase velocity errors. Computation complexity and memory requirements can be reduced, and the frequency bands to be calculated are extended.
出处
《上海大学学报(自然科学版)》
CAS
CSCD
2004年第2期111-114,共4页
Journal of Shanghai University:Natural Science Edition
基金
国家自然科学基金 (6 0 1 71 0 0 7)资助项目
上海市教委青年科学基金资助项目
关键词
时域有限差分法
数值色散
数值相速
微带天线
PML吸收边界
finite-difference time-domain method
numerical dispersion
numerical phase velocity
microstrip antenna
PML absorbing boundary condition