摘要
讨论了紧致非单连通的具非负曲率的流形的一些几何性质,并应用它们证明了具非负曲率的紧致非单连通曲面必为平坦的.
The paper discusses some geometric properties of a non-simply connected compact manifold with nonnegative Curvature.With the help of them,it can be proved that the non-simply connected compact surface with nonnegative curvature must be flat.
出处
《集美大学学报(自然科学版)》
CAS
北大核心
2004年第1期87-90,共4页
Journal of Jimei University:Natural Science
基金
集美大学科研基金资助项目(C50329)