期刊文献+

基因药物研究现状和对策 被引量:9

Advances and Strategies in Gene Drugs Development
下载PDF
导出
摘要 生物技术药物以人类体细胞的基因组、转录本组和蛋白质组三个层次生物大分子为目标 ,基因药物的研究主要针对致病基因的DNA和基因转录本mRNA两类生物大分子 .mRNA从结构上考虑是研发核酸药物的最理想靶标和策略之一 .反义寡核苷酸、特异水解基因mRNA的核酸酶(ribozyme和DNAzyme)以及具有干扰作用的双链RNA(siRNA)是药物设计的策略之二 .mRNA结构靶点研究是研发反mRNA基因药物的基础 ,mRNA分子具有高度折叠的二级及三级结构 ,阐明其可及性位点 ,筛选其结构靶位点序列是关键 .近年研究报道的靶点筛选有约 7种mRNA的实测新技术 ,以及计算机辅助软件预测分析 .但发展分子生物学实验新技术以分析、确认靶点是药物研发策略之三 . Biotech drugs are targeting DNAs,transcripts and proteins of disease related genes in human cells,among which gene drugs focus on functional gene duplex DNAs and mRNA transcripts.Considering the structure accessibility,mRNA is the first strategy of targeting and the ideal targeting molecule.Hereby antisense oligonucleotides,trans\|cleaving ribozymes or RNA\|cleaving DNAzymes,and siRNAs are the second strategy to design the therapeutic agents.But the structural target sites on mRNA are the basis for developing the anti\|mRNA agents.Since RNA molecules have the secondary and higher structures,to probe the accessibility and verify the accessible sites sequences for targeting is the key challenge.Developing experimental procedures on real mRNA molecules to verify the mRNA accessible sites and confirm the effective binding and targeting is the third strategy.In recent years,seven different approaches based on the real mRNA molecules in vitro were reported for successfully identifying mRNA target sites,while a computer dependent prediction method was also reported.
出处 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2004年第2期143-148,共6页 Chinese Journal of Biochemistry and Molecular Biology
基金 国家自然科学基金 (3 0 2 715 46) 北京市自然科学基金 (5 0 3 3 0 2 0 ) 军事医学科学院回国启动基金资助~~
关键词 基因药物 生物技术药物 mRNA 可及性 靶点 致病基因 基因转录本 生物大分子 gene drug,mRNA,accessibility,target site,ribozyme,DNAzyme,siRNA
  • 相关文献

参考文献31

  • 1Paterson B M, Roberts B E, Kuff E L. Structural gene identification and mapping by DNA-mRNA hybrid-arrested cell-free translation. Proc Natl Acad Sci USA, 1977, 74:4370 - 4374
  • 2Stephenson M L, Zamecnik P C. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonueleotide. Proc Natl Acad Sci USA, 1978, 75:285 - 288
  • 3Mulamba G B, Hu A, Azad R F, Anderson K P, Coen D M. Human cytomegalovirus mutant with sequence-dependent resistance to the phosphorothioate oligonucleotide fomivirsen. Antimicrob Agents Chemother, 1998, 42:971 ~ 973
  • 4Luger S M, O' Brien S G, Ratajczak J, Ratajczak M Z, Mick R,Stadtmauer E A, Nowell P C, Goldman J M, Gewirtz A M.Oligodeoxynucleotide-mediated inhibition of c-myb gene expression in autografted bone marrow: a pilot study. Blood, 2002, 99:1150 ~ 1158
  • 5Baer M R, Augustinos P, Kinniburgh A J. Defective c-myc and c-myb RNA tutnover in acute myeloid leukemia cells. Blood, 1992, 9:1319- 1326
  • 6Reed J C, Stein C, Subasinghe C, Haldar S, Croce C M, Yum S,Cohen J. Antisenso-mediated inhibition of BCL2 protooncogene expression and leukemic cell growth and survival: comparisons of phosphodiester and phosphorothioate oligodeoxynucleotides. Cancer Res
  • 7Nemunaitis J, Holmlund J T, Kraynak M, Richards D, Bruce J,Ognoskie N, Kwoh T J, Geary R, Dorr A, Von Hoff D, Eckhardt S G.Phase I evaluation of ISIS 3521, an antisense oligodeoxynucleotide to protein kinase C-α, in patients with advanced cancer. J Clin
  • 8Cunningham C C, Holmlund J T, Schiller J H, Geary R S, Kwoh T J,Dorr A, Nemunaitis J. A phase I trial of c-Raf kinase antisense oligonucleotide ISIS 5132 administered as a continuous intravenous infusion in patients with advanced cancer. Clin Cancer Res,
  • 9Cunningham C C, Holmlund J T, Geary R S, Kwoh T J, Dorr A,Johnston J F, Monia B, Nemunaitis J. A phase I trial of H-ras antisense oligonucleotide ISIS 2503 administered as a continuous intravenous infusion in patients with advanced carcinoma. Cancer, 2001
  • 10Looney D, Yu M. Clinical aspects of ribozymes as therapeutics in gene therapy. Methods Mol Biol, 1997, 74:469 - 486

二级参考文献54

  • 1[1]Breaker R R. Making catalytic DNAs. Science, 2000, 290 (5499):2095~2096
  • 2[2]Jaschke A. Artificial ribozymes and deoxyribozymes. Curr Opin Struct Biol, 2001,11(3) :321~326
  • 3[3]Santoro S W, Joyce G F. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci USA, 1997,94(8):4262~4266
  • 4[4]Santoro S W, Joyce G F. Mechanism and utility of an RNA-cleaving DNA enzyme. Biochemistry, 1998,37(38): 13330~13342
  • 5[5]Khachigian L M. Catalytic DNAs as potential therapeutic agents and sequence-specific molecular tools to dissect biological function. J Clin Invest, 2000,106(10): 1189~1195
  • 6[6]WuY, YuL, McMahon R, Rossi J J, Forman S J,Snyder D S. Inhibition of bcr-abl oncogen expression by novel deoxyribozymes (DNAzymes). Hum Gene Ther, 1999, 10(17): 2847~2857
  • 7[7]Pan W H, Devlin H F, Kelley C, Isom H C, Clawson G A. A selection system for identifying accessible sites in target RNAs. RNA, 2001,7(4) :610~621
  • 8[8]Cairns M J, Hopkins T M, Witherington C, Wang L, Sun L Q. Target site selection for an RNA-cleaving catalytic DNA. Nat Biotechnol,1999,17(5): 480~486
  • 9[9]Cairns M J, Hopkins T M, Witherington C, Sun L Q. The influence of arm length asymmetry and base substitution on the activity of the 10-23DNA enzyme. Antisense Nucleic Acid Drug Dev,2000,10(5): 323~332
  • 10[10]Yen L, Strittmatter S M, Kalb R G. Sequence-specific cleavage of Huntingtin mRNA by catalytic DNA. Ann Neurol, 1999, 46(3): 366~373

共引文献44

同被引文献107

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部