期刊文献+

增量神经网络模型预报100t电弧炉终点碳、磷和温度的应用 被引量:10

Application of Increment Artificial Neural Network Model to Prediction of End-Point Carbon, Phosphorus and Temperature for an 100 t EAF Steelmaking
下载PDF
导出
摘要 结合增量模型和神经网络模型的优点 ,提出增量神经网络模型 ,该模型特点为 :只注重系统输入量和输出量的变化 ,系统输入与输出增量的映射关系通过网络很快形成 ,网络结构简单。以废钢、铁水、装料制度、通电时间、吨钢氧耗和电耗相对于参考炉均值的增量为输入节点 ,对冶炼钢水终点温度和碳、磷进行预报。结果表明 ,当钢水终点温度和碳、磷含量的控制精度分别在± 10℃ ,± 0 .0 2 %和± 0 .0 0 4 %时 ,预报值命中率分别为 93% ,75 %和 86 %。 Combined the advantage of increment model and artificial neural network model, the increment artificial neural network model has been developed in this paper. The characteristics of the developed model are paying attention to the change of input and output quantity, mapping relationship of system input and output quantity forming quickly by network and structure of network being simple. The end-point temperature and carbon and phosphorus content are predicted by increment of scrap, hot metal, charging program, power on time, oxygen and electric power consumption per ton steel corresponding to reference furnace average value as input nodes. The results showed that as controlled precision of carbon and phosphorus content and temperature of molten steel was ±0.02%, ±0.004% and ±10 ℃ individually, the percentage of hits of predicted value was respectively 75%, 86% and 93%.
出处 《特殊钢》 北大核心 2004年第3期40-41,共2页 Special Steel
关键词 电弧炉炼钢 温度 预报 增量神经网络模型 Increment Artificial Neural Network, 100 t EAF, Carbon, Phosphorus, Temperature, Prediction
  • 相关文献

参考文献3

  • 1丁容.转炉人工智能静态模型控制模型的开发[A]..西安:第二届全球华人人工智能控制和智能自动化会议文集[C].,1977..
  • 2张际先,宓霞.神经网络及其在工程中的应用.北京:机械工业出版社,1996
  • 3袁曾任.人工神经元网络及其应用.北京:清华大学出版社,1999

同被引文献115

引证文献10

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部