摘要
正确分析具有复杂误差结构的物理量的不确定度对科学实验来说是一件很重要的事情。文中通过对各种误差构成因子的分析,首先列出待测物理量的误差结构式,然后依据对该结构式的方差分析,导出方差方程式。通过解该方差方程式,得出各项误差方差的估计值和待测量的标准不确定度,并采用蒙特卡罗计算法求出其自由度和扩展不确定度。
It is important to correctly analyse measurement uncertainty with complex error structure for scientific research. A method for evaluating this kind of uncertainty is presented. Firstly, equations containing linear error structure are constructed according to the mathematical model of measurement. Then, through ANOVA for the equations, a system of variance equations is derived. The variances of each errors and the standard uncertainty of the measurand are estimated by solving the variance equations. M.C. method is used to calculate the effective degrees of freedom and the coverage factor, and the expanded uncertainty.
出处
《计量学报》
CSCD
北大核心
2004年第2期188-192,共5页
Acta Metrologica Sinica
关键词
计量学
测量不确定度
复杂误差结构
统计分析
方差方程式
蒙特卡罗法
Metrology
Measurement uncertainty
Complex error structure
Statistical analysis
Variance equations
M.C.(Monte Carlo) method