期刊文献+

不同钴源对合成LiCoO_2性能的影响 被引量:1

Effects of different cobalt sources on the performances of synthesized LiCoO_2
下载PDF
导出
摘要 采用液相软化学合成法和高温固相反应法合成了LiCoO2 正极材料 ,并考察了不同钴源、添加剂氨水和乙醇对LiCoO2 正极材料的物理性质和电化学性能的影响 ,采用XRD、BET、SEM、TEM、粒度分布和电化学性能测试对合成LiCoO2 正极材料进行了表征。结果表明 ,不同钴源、添加剂氨水和乙醇对合成LiCoO2 正极材料的物性和电化学性能都有较明显的影响。液相软化学法合成LiCoO2 正极材料时 ,Co(NO3 ) 2 ·6H2 O是最好的钴源 ;高温固相反应法合成LiCoO2 正极材料时 ,Co3 O4(UM ) The LiCoO_2 cathode material was synthesized by liquid-phase soft-chemistry process and solid state reaction at higher temperature with different cobalt sources respectively, and characterized by XRD, BET, SEM, TEM, laser particle size distribution and electrochemical testing. The effects of different cobalt sources, aqueous ammonia and ethanol additives on the physical and electrochemical properties of LiCoO_2 cathode materials were investigated. The results have demonstrated that the different cobalt sources, aqueous ammonia and ethanol additives have remarkable influences on the physical and electrochemical properties of (LiCoO_2) cathode material. When liquid-phase soft-chemistry process is used to synthesize LiCoO_2 cathode material, the Co(NO_3)_2·6H_2O is the best cobalt source. Whereas Co_3O_4 of Union Mineral Corporation is the most excellent cobalt source when high-temperature solid state reaction method is used to prepare LiCoO_2 cathode materials. The optimal sintering temperature range is 800~820?℃ when liquid-phase soft-chemistry process is used to synthesize LiCoO_2 cathode materials. Liquid-phase soft-chemistry process is superior to high-temperature solid state reaction method when LiCoO_2 cathode materials is prepared.
出处 《化工科技》 CAS 2004年第2期20-25,共6页 Science & Technology in Chemical Industry
基金 中国科学院"西部之光"人才计划 中国科学院青年创新基金资助项目 四川省科技攻关计划资助项目 (0 2GG0 980 )
关键词 LICOO2 正极材料 锂离子蓄电池 液相软化学合成法 高温固相反应法 钴源 LiCoO_2 Cathode material Lithium-ion rechargeable battery Synthesis Characterization
  • 相关文献

参考文献12

  • 1刘兴泉,李淑华,何泽珍,陈召勇,于作龙.氧化还原溶胶-凝胶法制备LiCoO_2[J].电池,2002,32(5):258-260. 被引量:6
  • 2Jiang Fan, Peter S Fedkin. Electrochemical impedance spectra of full cells: relation to capacity and capacity-rate of rechargeable Li cells using LiCoO2, LiNiO2 and LiMn2O4 cathodes [J].J Power Sources, 1998,72:165~173.
  • 3Bruce P G. Solid-state chemistry of lithium power sources[J].Chem. Commun., 1997,19:1 817-1 824.
  • 4Gommov R W, Thackeray M M. Characterization of LT-LiCo1-xNixO2 electrodes for rechargeable lithium batteries [J].J Electrochem Soc, 1993, 140: 3 365-3 370.
  • 5Scrosati B. New advances on electrode materials for lithium-ion batteries [J].Electrochimica Acta. 2000,45:2 461-2 466.
  • 6Scrosati B. Lithium rocking-chair batteries, an old concept? [J]. J Electrochem Soc, 1992,139:2 776-2 778.
  • 7Scrosati B. Challenge of portable power[J]. Nature, 1995, 373:557-558.
  • 8Caurant D, Baffier N, Garcia B, et al. Synthesis by a soft-chemistry route and characterization of LiCo1-xNixO2 cathode materials [J].Solid State Ionics, 1996, 91:45-54.
  • 9Larcher D, Palacin M R, Amatucci G G, et al. Electrochemically active LiCoO2 and LiNiO2 made by cationic exchange under hydrothermally conditions [J].J Electrochem Soc, 1997, 144(2):408-413.
  • 10Sheu S P, Yao C Y, Chen J M, et al. Influences of LiCoO2 particle size on the performance of lithium-ion batteries [J].J Power Sources, 1997, 68(2): 533-535.

二级参考文献7

  • 1吴国良 刘人敏.锂离子电池LiCoO2正极材料及其应用研究.第24届中国化学与物理电源学术年会论文集[M].哈尔滨,2000.234-235.
  • 2Nagaura T, Tozawa K. Lithium-ion rechargeable battery[J]. Prog. Batte ries Sol.Cells, 1990, 9:209~217.
  • 3Larcher D,Palacin M R,Amatucci G G,Tarascon J M. Electro-chemically active LiCoO2and LiNiO2 made by cationic exchange under hydrothermal condit ions[J]. J Electrochem Soc,1997, 144(2):408.
  • 4郭鸣凤,张洪有,叶劲草,等. 锂离子电池用正极材料LiCo1-xNixO 2的研究.第九届全国电化学学术会议论文集[C].厦门:1997.
  • 5Scrosati B. Lithium rocking-chairbatteries, an old concept [J].J Electrochem. Soc, 1997, 144(2):408.
  • 6周恒辉,慈云祥,刘昌炎.锂离子电池电极材料研究进展[J].化学进展,1998,10(1):85-94. 被引量:76
  • 7陈景贵.跨入新世纪的中国新型绿色电池工业[J].电源技术,2000,24(1):2-7. 被引量:28

共引文献9

同被引文献9

  • 1胡学山,林晓静,吁霁,孙玉恒,刘兴泉.锂离子蓄电池正极材料Li_(1+δ)V_3O_8的结构和研究进展[J].化工科技,2004,12(4):45-51. 被引量:3
  • 2Hai-Yan Xu, Hao Wang, Zhi-Qiang Song, et al. Novel chemical method for synthesis of LiV3O8 nanorods as cathode materials for lithium ion batteries[J]. Electrochimica Acta, 2004,49:349 - 353.
  • 3Jinxiang Dai, S F Y Li, Zhiqiang Gao, et al. Low-temperature synthesized LiV3O8 as a cathode material for rechargeable lithium batteries[J]. J. Electrochem Soc., 1998, 145:3 057- 3 062.
  • 4J Kawakita, Y Katayama. T Miura, et al. Lithium insertion behavior of Li1+x V3O8 prepared by precipitation technique in CH3OH[J]. Solid State Ionics, 1998, 110:199 - 207.
  • 5J Kawakita, T Miura, T Kishi. Lithium insertion and extraction kinetics of Li1 + x V3O8[J]. J. Power Sources, 1999, 83:79 - 83.
  • 6Jian Gao, Changyin Jiang, Chunrong Wan. Preparation and characterization of spherical Lii + x V3O8 cathode material for lithium secondary batteries [J]. J. Power Sources, 2004,125:90 - 94.
  • 7Jinggang Xie, Jinxia Li, Hui Zhan, et al. Low-temperature Sol-Gel synthesis of Lil.2V3Os from V2O5 gel[J]. Materials Letters, 2003, 57:2 682 - 2 687.
  • 8J Kawakita, M Majima, T Miura, et al. Preparation and lithium insertion behavior of Li1+ xV3O8-δ[J]. J. Power Sources,1997, 66:135 - 139.
  • 9刘兴泉,李淑华,何泽珍,陈召勇,于作龙.锂离子蓄电池正极材料LiCoO_2的制备与电化学性能研究[J].化工科技,2001,9(5):8-11. 被引量:5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部