期刊文献+

说话人自适应训练方法在连续语音识别中的应用 被引量:1

Speaker Adaptive Training in Continuous Speech Recognition
下载PDF
导出
摘要 自适应技术在近年来得到越来越多的重视 ,其中应用广泛的包括MAP、MLLR ,该技术利用少量特定人数据就可以调整码本 ,快速地提升识别性能 ,它要求原始的码本有很好的说话人无关性。本文介绍了结合MLLR自适应的说话人自适应训练 (SpeakerAdaptiveTraining ,以下简称SAT)算法 ,这种方法将每个说话人码本视为说话人无关码本经过线性变换的结果 ,在此基础上训练的说话人无关码本更有效剔除了说话人相关信息 ,因此在说话人自适应中时能根据特定数据调整更好地逼近说话人特性 ,从而有更好的性能表现。 More and more attentions have been paid on speaker adaptation in recent speech recognition research, especially on widely used MAP and MLLR. These techniques apply to fast codebook adjustment when only limited amount of training data is available, and they demand original model to be speaker independent. This article introduces MLLR integrated Speaker Adaptive Training (SAT) method, which regards every individual's codebook as the result of linear transformation of speaker independent codebook and trains speaker independent codebook based on such concept. Since speaker-related information is extracted by this means, the trained codebook is more 'speaker independent', so it would perform better in speaker adaptation.
出处 《中文信息学报》 CSCD 北大核心 2004年第3期61-65,共5页 Journal of Chinese Information Processing
基金 国家"86 3"高技术项目 ( 86 3- 30 6 -ZD0 3- 0 1- 2 )
关键词 计算机应用 中文信息处理 自适应 MLLR SAT computer application Chinese information processing adaptation MLLR SAT
  • 相关文献

参考文献6

  • 1Lee C-H,Lin C-H,Juang B-H.A Study on Speaker Adaptation of the Parameters of Continuous Density Hidden Markov Models [J].IEEE TRANSACTIONS ON SIGNAL PROCESSING,1991,39(4):806-814.
  • 2M.J.F.Gales.Maximum likelihood linear transformations for HMM-based speech recognition [J].Computer Speech and Language,1998,Volume 12.
  • 3Tasos Anastasakos,John McDonough,John Makhoul.Speaker adaptive training:A maximum likelihood approach to speaker normalization [A].International Conference on Acoustics,Speech,and Signal Processing (ICASSP'97) [C].
  • 4Tasos Anastasakos,John McDonough,Richard Schwarz,John Makhoul.A compact model for speaker-adaptive training [A].International Conference On Spoken Language Processing (ICSLP'96) [C].
  • 5吕萍,王作英,陆大金.基于最大似然模型插值的快速说话人自适应算法[J].中文信息学报,2002,16(1):49-53. 被引量:2
  • 6Lee C-H,Lin C-H,Juang B-H.Speaker adaptation of continuous density HMM's using linear regression [A].Proc.3rd Int.Conf.on Spoken Language Processing (ICSLP94) [C].Yokohama,Japan,1994.451-454.

二级参考文献2

  • 1王作英.基于段长分布的HMM语音识别模型.第二届全国汉字语音识别会议[M].庐山,1989..
  • 2刘丰.说话人自适应在汉语连续语音识别中的应用[M].北京:清华大学电子工程系,2000..

共引文献1

同被引文献12

  • 1C HLee,C HLin,B HJuang. A study on speaker adaptation of the parameters of continuous density hidden Markov models[J]. IEEE Trans.on Acoustic and Speech Signal Processing.1991,39 (4): 806-814.
  • 2C J Leggetter. Improved acoustic modeling for HMMs using linear transformations[D]. Cambridge University,1995.
  • 3C J Leggetter,P C Woodland.Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models[J].Computer Speech and Language,1995,9 (2): 171-185.
  • 4J L Gauvain,C HLee.Maximum a posteriori estimation for multivariate Gaussian observations[J]. IEEE Trans. on Speech and Audio Processing,1994,2 (2): 291-298.
  • 5de la Torre A,Segura J C.Non-linear transformations of the feature space for robust speech recognition[C]//Proceedings of the ICASSP,2002: 401-404.
  • 6Steve Young,etc.The HTK Book(for HTK Version 3.4)[R].Cambridge University Engineering Department.2006,12.
  • 7A.Stolcke.SRILM-An Extensible Language Modeling Toolkit[C]//Proceedings of the Conference on Spoken Language Processing,2002,901-904.
  • 8G Zavaliagkost,R Schwatz,J Makhoul. Batch,incremental,and instantaneous adaptation techniques for speech recognition[C]//Proceedings of the ICASSP.1995.
  • 9R O Duda,P E Hart. Pattern Classification and Scene Analysis [M]. New York: John Wiley,1973.
  • 10那斯尔江.吐尔逊,吾守尔.斯拉木.基于隐马尔可夫模型的维吾尔语连续语音识别系统[J].计算机应用,2009,29(7):2009-2011. 被引量:17

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部