期刊文献+

单向激励源在TD-BPM中的应用

One-Way Excitation Source for TD-BPM
下载PDF
导出
摘要 把单向激励源应用到隐式时域光束传播方法 (TD- BPM)中 ,结合交替方向隐式方法 (ADIM)及 Grank- Nicho-son差分原理 ,给出了单向激励源在隐式 TD- BPM中的具体实现方法 .通过该方法可以方便地得到各种有反射结构的反射场和总场 ,在模拟计算不连续界面的反射、透射问题中有重要的作用 .通过几个基本问题得到了该方法的各种计算结果 。 Combined with the alternating-direction implicit method and the Grank-Nichoson algorithm,the one-way excitation source is introduced into the implicit time-domain beam propagation method (TD-BPM).With the one-way excitation,the TD-BPM can be used to analyze and simulate the reflection and transmission at an interface of a guided-wave optoelectronic device.Examples are given to show the effectiveness of the present method.
出处 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2004年第4期472-476,共5页 半导体学报(英文版)
基金 浙江省科技计划资助项目 ( No.0 0 110 10 2 7)~~
关键词 时域光束传播方法 交替方向隐式方法 单向激励源 反射 数值计算 TD-BPM ADIM one-way excitation reflection numerical method
  • 相关文献

参考文献11

  • 1Kaczmarski P, Lagasse P E. Bidirectional beam propagationmethod.Electron Lett,1988,24(11):675
  • 2Yu Chunlin, Yevick David. Application of the bi-directionalparabolic equation method to optical waveguide facets.J Opt Soc Am A,1997,14(7):1448
  • 3Chiou Yih-Peng, Chang Huang-Chun. Analysis of opticalwaveguide discontinuities uing the Páde approximations.IEEE Photonics Technol Lett,1997,9(7):964
  • 4Jin G H,Harari J,Vilcot J P,et al.An improvement time-domain beam propagation method for integrated optics components.IEEE Photonics Technol Lett,1997,9(3):348
  • 5Liu Pao-Lo,Zhao Qida,Choa Fow-San.Slow-wave finite-difference beam propagation method.IEEE Photonics Technol Lett,1995,7(8):890
  • 6Ma Fred.Slowly varying envelope simulation of optical waves in time domain with transparent and absorbing boundary condition.J Lightwave Technol,1997,15(10):1974
  • 7Hsueh Yu-Li, Yang Ming-Chuan, Chang Hung-Chun, et al.Three-dimensional noniterative full-vectorial beam propagation method based on the alternating direction implicit method.J Lightwave Technol,1999,17(11):2389
  • 8Huang W P,Xu C L,Lui W,et al.The perfectly matched layer(PML) boundary condition for the beam propagation method.IEEE Photonics Technol Lett,1996,8(5):649
  • 9Rappaport C M.Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space.IEEE Microw Guided Wave Lett,1995,5(3):90
  • 10张小峰,余金中,王启明,魏红振.BPM方法在SOI结构中的应用[J].Journal of Semiconductors,2002,23(2):169-173. 被引量:1

二级参考文献12

  • 1[1]Jin G H,Harari J,Vilcot J P,et al.An improved time-domain beam propagation method for integrated optics components.IEEE Photon Technol Lett,1997,9:348
  • 2[2]Ma F.Slowly varying envelope simulation of optical waves in time domain with transparent and absorbing boundary conditions.J Lightwave Technol,1997,15(10):1974
  • 3[3]Hsueh Yuli,Yang Minchuan,Chang Hungchun.Three-dimensional noniterative full-vectorial beam propagation method based on the alteration direction implicit method.Lightwave Technol,1999,17(11):2389
  • 4[4]Hadley G R.Transparent boundary condition for the beam propagation method.IEEE J Quantum Electron,1992,28(1):363
  • 5[5]Vassallo C,Van der Keur J M.Comparison of a few transparent boundary conditions for finite-difference optical mode-solvers.J Lightwave Technol,1997,15(2):379
  • 6[6]Vassallo C,Van der Keur J M.Highly efficient transparent boundary conditions for finite difference beam propagation method at order four. J Lightwave Technol,1997,15(10):1958
  • 7[7]Huang W P,Xu C L,Yokoyama K.The perfectly matchedlayer (PML) boundary condition for the beam propagation method.IEEE Photon Technol Lett,1996,8(5):649
  • 8[8]Dhiou YihPeng,Chang Hungchun.Complementary operatorsmethod as the absorbing boundary condition for the beam prppagation method.IEEE Photon Technol Lett,1998,10(7):976
  • 9[9]Law C T,Zhang X.Concurrent complementary operatorboundary conditions for optical beam propagation.IEEE Photon Technol Lett,2000,12(1):56
  • 10[10]Yevick D,Bardyszewski W.Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis.Opt Lett,1992,17(5):329

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部