期刊文献+

不确定时滞反应扩散系统的滑动模控制 被引量:2

Sliding mode control for uncertain reaction diffusion systems with delay
下载PDF
导出
摘要 借助不等式分析方法研究一类不确定时滞反应扩散系统的滑动模控制问题,设计了滑模控制器。分析了在滑动模切换面上滑动模控制系统关于不确定量的不变性特征,为研究在系统工作环境的变化、降阶近似、线性化近似、测量误差等因素干扰下所建立的实际控制系统的数学模型———不确定时滞分布参数控制系统的鲁棒性问题奠定了理论基础。 The sliding mode control problems for a class of uncertain reaction diffusion systems with delay are investigated by using inequality analysis. This paper designs the sliding mode controller of the uncertain reaction diffusion systems with delay and the invariant characteristic of the sliding mode control system is analyzed. The mathematic model of control system was established, and the model is conditional by the change of the operating enviroment, model reduction, linearzation approximations, unmodeled dynamics, measurement errors. The results provide the theoretical foundation for the robust problems of the uncertain reaction diffusion systems.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2004年第4期501-504,共4页 Systems Engineering and Electronics
基金 国家自然科学基金(69934030) 广东省自然科学基金(011629) 江南大学科研基金(103000-21050323)资助课题
关键词 不确定反应扩散系统 滑动模控制 时滞 uncertain reaction diffusion system sliding mode control delay
  • 相关文献

参考文献4

  • 1Chen M L, Tao C W, Lee T T. Sliding Mode Controller for Linear Systems with Mismatched Time-Varying Uncertainties [J]. Journal of Franklin Institute, 2000,337: 105-115.
  • 2Wang Z, Huang B, Unbehauen H. Robust Reliable Control for a Class of Uncertain Nonlinear Sate-Delayed Systems [J]. Automatica, 1999,35:955-963.
  • 3Orlov Y V, Utkin V I. Sliding Mode Control in Indefinite-Dimensional Systems [J]. Automatica, 1987, 23(6): 753-757.
  • 4Gao C C, Liu Y Q. On the Design of Decentralized Variable Structure Controllers of Neutral nonlinear Large-Scale Control Systems with Delays [C]. IEEE International Conference on Systems, Man and Cybernetics, 1996, 1: 292-297.

同被引文献21

  • 1陈振韬.一类时滞抛物型偏微分方程解的振动性质[J].数学物理学报(A辑),1994,14(1):115-120. 被引量:6
  • 2罗毅平,邓飞其.变时滞分布参数系统的全局指数稳定性[J].控制理论与应用,2005,22(4):562-566. 被引量:8
  • 3Banks H T,Musante C J,Raye J K.Predictions for a distributed pamrrmter model describing the Hepatic processing of 2.3.7.8-TCDD [J].Mathematical and Computer modeling,2001,33:49-64.
  • 4Cui Baotong,Li Weinian.Oscillation of systems of hyperbolic equations with functional arguments[J].Appl.Anal.,1999,72(1-2): 43-56.
  • 5Orlov Y V,Utkin V I.Sliding mode control in indefinite-dimensional systems[J].Automatica,1987,23(6):753-757.
  • 6Kolmanovskii V,Myshkis A.Applied theory of functional differential equations[M].Kluwer Academic,Dordrecht,1992.
  • 7Satyarn G,Ahrnet K,Ahrnet P.Control of nonlinear distributed parameter prccesses using symmetry groups and invariance conditions [J].Computers and Chemical Engintering,2002.26:1023-1036.
  • 8Henriquez Heman R.Stabilization of hereditary distribution parameter control system[J].Systems and Control Letters, 2001,(44) :35-43.
  • 9Halanay A.Differential equations:stability oscillations time-lags [M].New York:Academic,1966.
  • 10丁同仁 李承治.常微分方程教程[M].高等教育出版社,2001..

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部