期刊文献+

属于不同集合的定性信任度的序比较及应用 被引量:1

Comparison of Qualitative Belief Degrees Belonging to Different Sets and Its Application
下载PDF
导出
摘要 在定性不确定推理中 ,定性信任度集并不是惟一的 Akdag等人提出的不同定性信任度集中元素之间的序比较方法存在缺陷 ,与定性运算并不协调 ,这将会导致不确定性的定性表达和操作上的矛盾 提出了新的属于不同集的定性信任度的序比较方法 ,并定义了不同定性信任度集中元素之间的定性混合运算 这种序比较方法不仅更加符合直观 ,而且与定性运算保持一致 。 The set of qualitative belief degrees adopted in qualitative uncertain reasoning is not unique It is found that the approach to comparison of qualitative belief degrees belonging to different sets proposed by Akdag et al has a serious deficiency in consistency with qualitative operation The inconsistency may result in confusion in representation and reasoning about uncertainty Proposed in this paper is a new approach to the comparison of qualitative belief degrees belonging to different sets The qualitative mixed operations of the elements of different sets of qualitative belief degrees are defined The approach is more reasonable in intuitive and consistent with qualitative operation, and in favor of qualitative manipulation of uncertainty under different sets of qualitative belief degrees
出处 《计算机研究与发展》 EI CSCD 北大核心 2004年第4期558-564,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目 (6992 5 2 0 3 60 3 73 0 0 2 )
关键词 不确定推理 定性信任度 定性概率 定性运算 序关系 uncertain reasoning qualitative belief degree qualitative probability qualitative operation relationship of order
  • 相关文献

参考文献6

  • 1[1]J Pearl. Probabilistic Reasoning in Intelligent Systems: Network of Plausible Inference. San Mateo, CA: Morgan Kaufmann, 1988
  • 2[2]H Akdag, M DeGLas, D Pacholczyk. A qualitative theory of uncertainty. Fundamenta Informaticae, 1992, 17(4): 333~362
  • 3[3]H Seridi, F Bannay-Dupin De ST CYR, H Akdag. Qualitative operators for dealing with uncertainty. In: The 5th Int'l Workshop Fuzzy-Neuro Systems'98. Munich: Infix, 1998. 202~209
  • 4[4]A Chawki Osseiran. Qualitative Bayesian network. Information Sciences, 2001, 131(1-4): 87~106
  • 5[5]L Zadeh. PRUF-A meaning representation language for natural languages. The Int'l Journal of Man-Machine Studies,1978, 10(4): 395~460
  • 6[6]Herman Akdag, Myriam Morhtari. Approximative conjunctions processing by multi-valued logic. In: IEEE Int'l Symp on Multiple-Valued Logic (ISMVL'96). Santiago de Compostela, Spain: IEEE Computer Society, 1996. 130~135

同被引文献12

  • 1G. Shafer. A Mathematical Theory of Evidence. Princeton:Princeton University Press, 1976.
  • 2J. Pearl. Reasoning with belief functions: An analysis of compatibility. International Journal of Approximate Reasoning,1990, 4(5-6): 363~389.
  • 3H. Akdag, M. DeGLas, D. Pacholczyk. A qualitative theory of uncertainty. Fundamenta Informaticae, 1992, 17(4): 333~ 362.
  • 4H. Seridi, F. Bannay-Dupin De ST CYR, H. Akdag. Qualitative operators for dealing with uncertainty. In: Proc 5th Int'l Workshop Fuzzy-NeuroSystems. Munich:Infix, 1998. 202~209.
  • 5A. Chawki Osseiran. Qualitative Bayesian network. Information Sciences, 2001, 131( 1-4): 87~106.
  • 6Simon Parsons, E. H. Mamdani. Qualitative Dempster-Shafer theory. In: Proc. IMACS Ⅲ Int'l Workshop on Qualitative Reasoning and Decision Technologies. Barcelona: CIMNE Press,1993. 471~480.
  • 7Simon Parsons. Some qualitative approaches to applying the Dempster-Shafer theory. Information and Decision Technologies,1994, 19(4): 321~337.
  • 8L. Zadeh. PRUF-A meaning representation language for natural languages. The International Journal of Man-Machine Studies,1978, 10(4): 395~460.
  • 9L. P. Wesley. Evidential knowledge-based computer vision.Optical Eng., 1986, 25(3): 363~379.
  • 10C. K. Murphy. Combining belief functions when evidence conflicts. Decision Support Systems, 2000, 29(1): 1~9.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部