期刊文献+

一种基于维层次编码的OLAP聚集查询算法 被引量:14

A Novel Aggregation Algorithm for Online Analytical Processing Queries Evaluation Based on Dimension Hierarchical Encoding
下载PDF
导出
摘要 联机分析处理 (OLAP)查询往往需在海量数据上进行即席的复杂分组聚集查询 ,在其SQL语句中通常包含多表连接和分组聚集操作 ,因而减少多表连接和压缩关键字 ,以及对查询数据进行有效地分组聚集操作 ,成为ROLAP查询处理的关键问题 提出了一种基于维层次编码的新型预分组聚集算法DHEPGA DHEPGA算法充分利用了编码长度较小的维层次编码及其前缀 ,来快速检索出与查询关键字相匹配的维层次编码 ,求得维层次属性的查询范围 ,减少了I/O开销 ,提高了OLAP查询效率 理论分析和实验结果表明 。 The OLAP (online analytical processing) queries are ad hoc complex aggregation queries on the massive data set These queries include multi table join and aggregation operation in their SQL clauses As a result, how to reduce multi table join, compress the key word and effectively aggregate the query data becomes the key issue for ROLAP(relational OLAP)query evaluation To solve this problem, a novel pre grouping aggregation algorithm DHEPGA(pre grouping aggregation based on the dimension hierarchical encoding) is proposed in this paper By using the small dimension hierarchical encoding and its hierarchical prefix path, DHEPGA can rapidly retrieve the matching dimension hierarchical encoding and evaluate the set of query ranges for each dimension As a result, this algorithm can greatly reduce the disk I/Os and highly improve the efficiency of OLAP queries The analytical and experimental results show that the DHEPGA algorithm proposed is more efficient than other existing ones
出处 《计算机研究与发展》 EI CSCD 北大核心 2004年第4期608-614,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目 (5 98895 0 4) 国家"八六三"高技术研究发展计划基金项目(2 0 0 2AA2 3 10 71) 江苏省"九五"重点攻关基金项目(BG980 17 1) 江苏省"十五"高科技基金项目(BG2 0 0 10 13 )
关键词 OLAP(联机分析处理) 聚集查询 维层次编码 层次前缀 OLAP(online analytical processing) aggregate query dimension hierarchical encoding hierarchical prefix path
  • 相关文献

参考文献11

  • 1[1]S Chaudhuri, U Dayal. An overview of data warehousing and OLAP technology. SIGMOD Record, 1997, 26(1): 65~74
  • 2[2]P E O'Neil, D Quass. Improved query performance with variant indexes. In: J Peckham ed. Proc of the ACM SIGMOD Int'l Conf on Management of Data. New York: ACM Press, 1997. 38~49
  • 3[3]C Y Chan, Y E Ioannidis. Bitmap index design and evaluation. In: L M Haas, A Tiwary eds. Proc of the ACM SIGMOD Int'l Conf on Management of Data. New York: ACM Press, 1998. 355~366
  • 4[4]M C Wu. Query optimization for selections using bitmaps. In: A Delis, C Faloutsos, S Ghandeharizadeh eds. Proc of the ACM SIGMOD Int'l Conf on Management of Data. New York: ACM Press, 1999. 227~238
  • 5[5]K Wu, E J Otoo, A Shoshani. A performance comparison of bitmap indexes. In: H Paques, L Liu, D Grossman eds. Proc of the 10th Int'l Conf on Information and Knowledge Management. New York: ACM Press, 2001. 559~561
  • 6[6]A Gupta, I S Mumick. Maintenance of materialized views: Problems, techniques, and applications. Data Engineering Bulletin, 1995, 18(2): 3~18
  • 7[7]N Roussopoulos. Materialized views and data warehouse. SIGMOD Record, 1998, 27(1): 21~26
  • 8[8]H Mistry, P Roy et al. Materialized view selection and maintenance using multi-query optimization. In: W G Aref ed. The ACM SIGMOD Int'l Conf on Management of Data. New York: ACM Press, 2001. 307~318
  • 9[9]A Sameet, A Rakesh et al. On the computation of multidimensional aggregates. In: T M Vijayaraman, A P Buchmann, C Mohan eds. Proc of the 22nd Int'l Conf on VLDB. San Fransisco:Morgan Kaufmann, 1996. 506~521
  • 10[10]V Markl, F Ramsak, R Bayern. Improving OLAP performance by multidimensional hierarchical clustering. In: M Adiba, C Collet, B C Desai eds. Proc of the Int'l Conf on Database Engineering and Applications. Los Alamitos: IEEE Computer Society Press, 1999. 165~177

同被引文献120

  • 1肖娟,叶枫.基于概念层次树的数据挖掘算法及应用研究[J].计算机应用研究,2005,22(3):61-63. 被引量:4
  • 2李睿,李珩,杨金民,郭卫锋.基于XML的OLAP实现方式研究[J].湖南大学学报(自然科学版),2005,32(5):114-119. 被引量:3
  • 3李盛恩,王珊.多维数据模型ER(■)[J].计算机学报,2005,28(12):2059-2067. 被引量:10
  • 4王学斌,王怀民,吴泉源,史殿习.一种模型转换的编织框架[J].软件学报,2006,17(6):1423-1435. 被引量:24
  • 5胡孔法,陈崚,顾颀,蔡俊杰,董逸生.数据仓库系统中一种高效的多维层次聚集算法[J].计算机集成制造系统,2007,13(1):196-201. 被引量:4
  • 6Chaudhuri U,Dayal U.Data warehousing and OLAP for decision support[J].ACM SIGMOD Record,1997,26(2):507-508.
  • 7Stockinger K.Bitmap indices for speeding up high-dimensional data analysis[C]// Proceedings of the 13th Int'l Conf on DEXA.Heidelberg:Springer,2002:881-890.
  • 8Wu K,Koegler W,Chen J,et al.Using bitmap index for interactive exploration of large datasets[C]// Proceedings of the 15th International Conference on Scientific and Statistical Database Management.Los Alamitos:IEEE Computer Society Press,2003:65-74.
  • 9Xin D,Han J,Li X,et al.Star-cubing:computing iceberg cubes by top-down and bottom-up integration[C]// The 29th Int'l Conf on VLDB.San Fransisco:Morgan Kaufmann Publishers,2003:476-487.
  • 10Wang W,Lu H J,Feng J L,et al.Condensed Cube:an effective approach to reducing data cube size[C]// Proc of the 18th International Conference on Data Engineering.Los Alamitos:IEEE Computer Society Press,2002:155-165.

引证文献14

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部