期刊文献+

一种可重构阵列的最小瑕点覆盖算法 被引量:1

Improved Algorithms about Minimum Fault Coverage in Reconfigurable Arrays
下载PDF
导出
摘要 关于可重构阵列的瑕点覆盖问题受到了很多文献的关注,特别地,关于可重构阵列的最小瑕点覆盖问题等价于二分图的受约束最小点覆盖问题,并被证明是NP-完全问题.针对本问题提出的算法运行时间为O(1.19k+kn),这里k为可替换行与列的数目,改进了原有的最好结果,其运行时间为O(1.26k+kn),较好地组合并扩展了研究参数计算的最新技术与经典匹配理论,且具有较好的实用价值.这是关于可重构阵列的最小瑕,点覆盖问题算法又一较大的改进,也是目前最小点覆盖问题相关参数算法的较有意义的改进. The fault coverage problem for reconfigurable arrays has received considerable attention in the literature. In particular , the minimum fault coverage problem for reconfigurable arrays is equivalent to a constrained minimum vertex cover problem on bipartite graphs and the problem has been proved to be NP-complete. This paper gives an algorithm developed for the problem,in which classical results in matching theory and recently developed techniques in the study of parameterized computation are nicely combined and extended. The algorithm is practically efficient with its running time bounded by O(1. I9k + kn) .where k is the minimum number of replacement rows and columns. The algorithm is a significant improvement over the previous algorithms for the minimum fault coverage problem for reconfigurable arrays with its running time bounded by O (1. 26k + kn), as well as over the related parameterized algorithms for the minimum vertex cover problem.
出处 《计算机科学》 CSCD 北大核心 2004年第4期184-188,共5页 Computer Science
基金 国家杰出青年自然科学基金(69928201) 国家自然科学基金(90104028) 长江学者奖励计划资助
关键词 超大规模集成电路 电路芯片 最小瑕点覆盖算法 可重构阵列 Reconfigurable arrays,Fault coverage,Vertex cover,Graph matching,Parameterized computation
  • 相关文献

参考文献6

  • 1Hasan N,Liu C L. Minimum Fault Coverage in Reconfigurable Arrays. In: Proc. 18th Int. Symp. on Fault-Tolerant Computing (FTCS'88) ,1988. 348-353
  • 2Nilsson N J. Principles of Artificial Intellegence. Tioga Publishing Co. ,1980
  • 3Chen J, Kanj I. An Constrained Minimum Vertex Covers of Bipartite Graphs: Improved Algorithms. In: Proc. 27th Intl.Workshop on Graph-Theoretic Concepts in Computer Science (WG'2001) ,Lecture Notes in Computer Science 2204,2001.55~65
  • 4Lovasz L,Plummer M D. Matching Theory, Annals of Discrete Mathematics 29 ,North-Holland, 1986
  • 5Cormen T H, Leiserson C E, Rovest R L. Introduction to Algorithms. McGraw-Hill Book Company,New York,1992
  • 6Bodlaender H L,Downey R G,Fellows M R,et al. Parameterized complexity analysis in computational biology. Computer Applications in the Biosciences, 1995,11: 49- 57

共引文献1

同被引文献7

  • 1Chen J,Kanj L,Jia W. Vertex Cover: Further Observations and Further Improvements. Journal of Algorithms, 2001,41: 280 ~301
  • 2Niedermeier R,Rossmanoth P. Upper bounds for vertex cover further improved. In:Proc. of the 16th Symposium on Theoretical Aspects of Computer Science (STACS'99), Lecture Notes in Computer Science, 1999,1563 561~570
  • 3Sze S-H, Chen J E. Find Specific motifs in DNA sequences via cliques in k-partite graphs[R]. Texas A&M University: Departments of ComputerScience and Biochemistry & Biophysics, 2003
  • 4Smith T, Waterman M. Identification of common molecular sequence. Journal of Molecular Biology, 1981,147:195~ 197
  • 5Chen J E,Kanj L A. Constrained minimum vertex cover in bipartite graphs: complexity and parameterized algorithms. Journal of Computer and System Sciences, 2003,67: 833~ 847
  • 6Lovasz L,Plummer M D. Matching Theory. Annals of Discrete Mathematics, North-Holland,1986.29
  • 7Kuo S-Y, Fuchs W K. Fault diagnosis and spare allocation for yield enhancement in large reconfigurable PLAs. In: Intl. Test Conf.IEEE Computer Society Press, Sept. 1987. 944~953

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部