期刊文献+

未来现金流的矩研究 被引量:5

A Study of Moments of Future Cash Flows
下载PDF
导出
摘要 在随机利率下对息力采用Wiener过程和Orentein-Uhlenbeck过程建模,得到未来现金流现值函数的一、二阶矩。作为一个特例,进一步研究n年期年金的一、二阶矩问题。 In this paper, by modeling for the force of interest with Wiener process and Orentein-Unlenback process, the (First) and the Second moment of present value of future cash flows were obtained.As an example, the author investigated (the) moments of present value of n-year Annuity contract.
作者 谢小良
出处 《系统工程》 CSCD 北大核心 2004年第4期36-38,共3页 Systems Engineering
关键词 保险 随机利率 金流 现金流 一阶矩 二阶矩 WIENER过程 Present Value Function Moment Future Cash Flows n-year Annuity Contract
  • 相关文献

参考文献6

  • 1刘凌云,汪荣明.一类随机利率下的增额寿险模型[J].应用概率统计,2001,17(3):283-290. 被引量:43
  • 2欧阳资生,鄢茵.随机利率下增额寿险现值函数矩的一些结果[J].经济数学,2003,20(1):41-47. 被引量:7
  • 3Airchison J,Brown J A C. The lognormal distribution[M]. Cambridge University Press,1963:8.
  • 4Dufrene D. The distribution of a perpetuity with application to risk theory and pension funding[J]. Scand.Actuarial Journal,1990:39~79.
  • 5Park G. Stochastic analysis of the interaction between investment and insurance risks[J]. North American Actuarial Journal,1997,12:55~84.
  • 6Two stochastrc approaches for disconting actuarial fuwction[J]. Aitin Bulletin,1996,26(1):167~181.

二级参考文献6

  • 1何文炯,蒋庆荣.随机利率下的增额寿险[J].高校应用数学学报(A辑),1998,13(2):145-152. 被引量:36
  • 2Aichison, J & Brown, J. A. C. , The lognormal distribution, Cambridge University Press, 1963, P.176.
  • 3Dufresne, D. , The distribution of a perpetuity with application to risk theory and pension funding,Scand Actuarial J. , 1990, 39-79.
  • 4Parker, G. , Two stochastic approaches for discounting actuarial function, Astin Bulletin, 26:1(1996),167-181.
  • 5Parker, G. , Stochastic analysis of the interaction between investment and insurance risks, North American Actuarial Journal, 12(1997), 55-84.
  • 6刘凌云,汪荣明.一类随机利率下的增额寿险模型[J].应用概率统计,2001,17(3):283-290. 被引量:43

共引文献44

同被引文献25

  • 1欧阳资生,鄢茵.随机利率下增额寿险现值函数矩的一些结果[J].经济数学,2003,20(1):41-47. 被引量:7
  • 2王丽燕,杨德礼.一类随机利率下的确定年金[J].数学的实践与认识,2005,35(12):7-12. 被引量:12
  • 3De Schepper A, De Vylder F, Goovaerts M, Kaas R. Interest randomness in annuities certain[J]. Insurance: Mathematics and Economics, 1992,11 (4): 271-281.
  • 4David Perry, Wolfgang Stadje. Function space integration for annuities [J]. Insurance: Mathematics and Economics, 2001,29 (1): 73-82.
  • 5Zaks A. Annuities under random rates of interest [ J]. Insurance : Mathematics and Economics, 2001,28 (1) : 1-11.
  • 6Krzysztof Burnecki, Agnieszka Marciniuk, Aleksander Weron. Annuities under random rates of interest- revisited [J]. Insurance : Mathematics & Economics, 2003,3 (3):457-460.
  • 7John A BECKMAN, Clinton P FUELLING. Extra random-ness in certain annuity models [J]. Insurance: Mathematics and Economics, 1991, 10(2): 275-287.
  • 8David PERRY, Wolfgang STADJE. Function space integra- tion for annuities[J]. Insurance: Mathematics and Econom- ics, 2001, 29(1): 73-82.
  • 9A ZAKS. Annuities under random rates of interest [J]. Insur- ance: Mathematics and Economics, 2001, 28(1) : 1-11.
  • 10E W FREES. Stochastic life contingencies with solvency con- siderations[J]. Transaction of Societies of Actuaries, 1990, 42(10) : 91-104.

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部