期刊文献+

基于最优一维分解的图像超分辨方法 被引量:2

Image Superresolution Basing on the Optimum Discomposition
下载PDF
导出
摘要 提出了一种用分离变量的一维函数乘积形式逼近二维图像数据的方法 ,通过在一维空间的超分辨处理 ,很容易实现对图像的超分辨处理。从理论上证明了这种表达是最优的。实际结果显示了超分辨的效果好 ,计算量小。 In this paper a novel method for image superresolution is proposed. The primary theory is proved that the 2 dimension image data can be approximated by the products of 1 dimension functions whose variables are separated from the image's variables. Therefore, the image superresolution can proceed conveniently through the 1 dimension superresolution. Concretely, the digital image ( M×N ) can be expressed by the summation of the products of M dimension vectors and N dimension vectors. So the image superresolution process can be converted to the M dimension vector processing and the N dimension vector processing easily. Thus the method is based on the eigenvectors. In the mean square error sense, this expression or decomposition is optimum. It is also proved to be identical with the literature[3] when the hits go to infinite. At last the applications verify the theoretical result. Namely, this method has the better results and can reduce the calculations because the image can be adjusted adaptively and be expressed by the less parameters. In addition, this method can also be applied to other fields of image processing and the information processing of the great capacity data.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2004年第4期423-428,共6页 Journal of Image and Graphics
基金 国家863项目基金(2001AA35040) 图像信息处理与智能控制教育部实验室开放基金(TKLJ01021)
关键词 最优分解 超分辨 图像数据 一维分解 图像处理技术 optimum decomposition, superresolution, image data
  • 相关文献

参考文献4

  • 1Bracewell R N. The Fourier Transform and its Applications[M]. New York: McGraw-Hill, 1986.
  • 2Daubechies I. Ten lectures on wavelets [A]. In: Society for Industrial and Applieal Mathematics [C], Philadelphia, PA,USA, 1992.
  • 3宋健.高维函数和流形在低维可视空间中的最优表达[J].科学通报,2001,46(12):977-984. 被引量:16
  • 4Huber P J. Projection pursuit[J]. Annals of statistics, 1985,13(2) : 435-475.

二级参考文献2

  • 1Lang S,Real and Functional Analysis,1990年,70页
  • 2关肇直,泛函分析讲义,1958年,143-149,274-293页

共引文献15

同被引文献11

  • 1Ueno I,Pearlman W A.Region of Interest Coding in Volumetric Images with Shape-adaptive Wavelet Transform[EB/OL].Http://www.cipr.rpi.edu/~pearlman/papers/ei03_5022-129_up.pdf.
  • 2Gokturk S B,Tomasi C.Medical Image Compression Based on Region of Interest with Application to Colon CT Images[EB/OL].Http://robotics.stanford.edu/~gokturkb/papers/paper_2.pdf.
  • 3Liu Lijie,Fan Guoliang.A New Method for JPEG2000 Region-of-Interest Image Coding:Most Significant Bitplanes Shift[EB/OL].Http://www.vcipl.okstate.edu/Publications/liu_mwscas.pdf.
  • 4Griffiths T L,Kalish M L.A Multidimensional Scaling Approach to Mental Multiplication,Memory & Cognition[J].2002,30(1):97-106.
  • 5Borg I,Groenen P.Modern Multidimensional Scaling,Theory and Applications[M].New York:Springer-Verlag,1997.
  • 6Pohl C,Genderen V J L.Multisensor Image Fusion in Remote Sensing,Concepts,Methods and Applications[J].International Journal of Remote Sensing,1998,19(5):823-854.
  • 7Bradley A P.JPEG 2000 and Region of Interest Coding[C]//Proc.of Digital Image Computing Techniques and Applications Conference.2002-01.
  • 8Ueno I,Pearlman W A.Region of Interest Coding in Volumetric Images with Shape-adaptive Wavelet Transform[EB/OL].2003-05.http://www.cipr.rpi.edu/~pearlman/papers/ei03_5022-129_up.pdf.
  • 9Griffiths T L,Kalish M L.A Multidimensional Scaling Approach to Mental Multiplication[J].Memory & Cognition,2002,30(1):97-106.
  • 10宋健.高维函数和流形在低维可视空间中的最优表达[J].科学通报,2001,46(12):977-984. 被引量:16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部