期刊文献+

测井时间序列的混沌现象研究 被引量:1

Researches on Chaotic Phenomena in Well-log Time Series
下载PDF
导出
摘要 测井时间序列的计算机沉积微相识别 ,在特征提取上有一定的难度。证明测井时间序列是混沌的 ,是提取其混沌特征的前提条件。混沌时间序列的判定目前已有不少方法 ,本文结合测井曲线的特点 ,利用相空间重构技术和 G- P算法 ,用关联维数方法证明了测井时间序列确实存在混沌。实验数据来自某油田的实际测井数据。实验结果表明 ,油层组的关联维数与油层的构造特点有关 。 Oil bearing layers and their sedimentary microfacies are generally analyzed by collecting oil well logs in the oilfield development. The well log time series is the correct reflection of geological characteristics of the oil bearing layers with quite a high probability. Unfortunately, feature extraction is of certain difficulty to the computer sedimentary microfacies recognition with well log time series. Oil bearing layers are the resultants of sedimentary layer sequence. The formation of oil bearing layers is very complicated and variable. Extracting the chaotic features is promising. But proving that well log time series are chaotic is prerequisite to extract their chaotic features. There are several methods developed for the chaos identification at present. In this paper, the well log time series is proved to be chaotic indeed by phase space reconstruction technology and G P algorithm, which is a practical algorithm for computing the correlation dimension of a time series. The experiment results indicate that the correlation dimension of an oil layer group is related to its structure. Another interesting phenomenon is that the correlation dimension of an oil layer group is generally larger than that of the whole well.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2004年第4期501-505,共5页 Journal of Image and Graphics
关键词 测井时间序列 混沌 关联维数 相空间重构 G-P算法 油层沉积特性 well log time series, chaos, correlation dimension, phase space reconstruction, G P algorithm
  • 相关文献

参考文献10

  • 1雍世和.测井资料数字处理与综合解释[M].北京:石油工业出版社,1982..
  • 2[法]O.塞拉著 谭廷栋等译.测井解释基础与数据采集[M].北京:石油工业出版社,1992.100-115.
  • 3刘咏梅.[D].哈尔滨:哈尔滨工程大学,1999.
  • 4Kantz H, Schreiber T. Nonlinear time series analysis [M].Cambridge University press, Cambridge, UK, 1997.
  • 5Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series[J]. Physica D, 1985,16(9):285-317.
  • 6Grassberger P, Procaccia I. Measuring the strangeness of strange attractors[J]. Physica D, 1983, (9) : 189-208.
  • 7Theiler J, Eubank S, Longtin A, et al Testing for nonliearity in time series: the method of surrogate data[J]. Physica D, 1992,(58) :77-94.
  • 8[美]格里博格C 约克JA编 杨立译.混沌对科学和社会的冲击[M].长沙:湖南科学技术出版社,2001.241-253.
  • 9章新华,张晓明,林良骥.船舶辐射噪声的混沌现象研究[J].声学学报,1998,23(2):134-140. 被引量:54
  • 10石雨田,潘保芝.分维的应用——定量描述裂缝发育程度[J].物探与化探,2000,24(6):426-430. 被引量:18

二级参考文献7

共引文献72

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部