期刊文献+

双时滞神经网络模型分支性的数值逼近 被引量:3

Hopf Bifurcations in Numerical Approximation for a Neural Network Model with Two Delays
下载PDF
导出
摘要 数值逼近是数值计算中的基本问题,对仿真算法的理论研究有重要意义.文章研究了一类重要的双时滞神经网络模型的Hopf分支的数值逼近问题.首先,将时滞差分方程表示为映射,然后利用离散动力系统的分支理论,给出了差分方程的Hopf分支存在的条件.得到了连续模型的Hopf分支与其数值逼近的关系.证明了当该模型在juu=(L,2,1=j)处有Hopf分支时,其数值逼近在相应的)(hj=uu(L,2,1=j)处产生Hopf分支.数值Hopf分支值与原连续系统的Hopf分支值之间满足)()(hOhjj+=uu. Numerical approximation is a fundamental problem of numerical analysis that has an important role for the theory of simulation algorithm. The numerical approximation of a class neural network model with two delays is considered. First, the delay deference equation is written as a map, and then, employing the theories of bifurcation for discrete dynamical systems, the conditions to guarantee the existence of Hopf bifurcations for numerical approximation are given. The relation of Hopf bifurcations between the continuous and the discrete are obtained. We prove that when the continuous model has Hopf bifurcations at juu=(L,2,1=j), the numerical approximation also has Hopf bifurcations at )(hj=uu(L,2,1=j). The numerical Hopf bifurcating values and the continuous systems satisfy )()(hOhjj+=uu.
出处 《系统仿真学报》 CAS CSCD 2004年第4期797-799,共3页 Journal of System Simulation
基金 国家自然科学基金(10271036)
关键词 神经网络模型 HOPF分支 数值逼近 EULER方法 neural network model Hopf bifurcation numerical approximation Euler method
  • 相关文献

参考文献9

  • 1[1]Chen Y,Wu J.slowly oscillating periodic solutions for a delayed frustrated network of two neurons [J],J Math Anal,2001,259:188-208.
  • 2[2]Wei J,Ruan S.Stability and bifurcation in a neural network model with two delays,Physica D [J],1999,130:255-272.
  • 3[3]Faria T.On a planar system modelling a neuron network with memory [J],J.Differential Equations,2000,168:129-149.
  • 4[4]Wei J,Velarde M,Makarov V,Panetsos F.Oscillary phenomena and Stability of periodic solutions in a simple neuyal net work with delay [J],Nonlinear phenomena in complex systems,2000,5:407-417.
  • 5[5]Koto T.Naimark-Sacker bifurcations in the Euler method for a delay differential equation [J].BIT.2000,115:601-616.
  • 6[6]Volker Wulf,Neville J Ford.Numerical Hopf bifurcation for a class of delay equations [J].JCAM.1999,111:153-162.
  • 7[7]Neville J Ford,Volker Wulf.Numerical Hopf bifurcation for the delay logistic equation.Technical Report 323,Manchester Centre for Computational Mathematics [J],1998.
  • 8[8]Neville J Ford,Volker Wulf.The use of boundary locus plots in the identification of bifurcation point in numerical approximation of delay differential equations [J].JCAM.1999,111:153-162.
  • 9[9]zhang Chunrui,Liu Mingzhu,Zheng Baodong.Hopf bifurcation for a class of delay differential equations [J],Applied mathematics and computation.2003,146:335-349.

同被引文献24

  • 1ZHENG BaoDong 1,LIANG LiJie 1 & ZHANG ChunRui 2 1 Department of mathematics,Harbin Institute of Technology,Harbin 150001,China,2 Department of mathematics,Northeast Forestry University,Harbin 150040,China.Extended Jury criterion[J].Science China Mathematics,2010,53(4):1133-1150. 被引量:4
  • 2沈启宏,魏俊杰.STABILITY AND BIFURCATION OF A HUMAN RESPIRATORY SYSTEM MODEL WITH TIME DELAY[J].Applied Mathematics and Mechanics(English Edition),2004,25(11):1277-1290. 被引量:1
  • 3魏俊杰,张春蕊,李秀玲.具时滞的二维神经网络模型的分支[J].应用数学和力学,2005,26(2):193-200. 被引量:10
  • 4KOTO T. Neimark-Sacker bifurcation in the Euler method for a delay differential equations[J]. BIT, 1999,39:110-115.
  • 5FORD N J, WULF V. The use of boundary locus plots in the identification of bifurcation point in numerical approximation of delay differential equations[J]. JCAM, 1999,111 : 153-162.
  • 6FORD N J, WULF V, Hopf bifurcation for numerical approximations to the delay logistic equation[J]. International Journal of Applied Science and Computations, 1999,6(3):167- 172.
  • 7FORD N J,WULF V. Numerical Hopf bifurcation for a class of delay differential equations[J]. JCAM,2000,115:601-616.
  • 8LIAO XIAOFENG. Hopf and resonant codimension two bifurcation in van der Pol equation with two time delays[J], Chaos, Solitons and Fraetals, 2005,23 : 857-871.
  • 9IOOSS G. Bifurcation of maps and applications[M]. New York:North-Holland Publishing Company, 1979:15-150.
  • 10NevilleJFord,VolkerWulf.Theuseofboundarylocusplotsintheidentificationofbifurcationpointinnumericalapproximationofdelaydifferentialequations[].JCAM.1999

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部