期刊文献+

四像限光电探测器的逆光路模型 被引量:2

Anti-Model of Ray-Path for Four Quadrant Photoelectric Detector
原文传递
导出
摘要 讨论了探测器的观测空间转换问题。介绍了一种用神经网络建立的从电信号特征参数到光路参数的光路反模型的方法。根据四像限光电探测器的两路输出信号在过零点附近时间段的逼近直线的斜率和截距与光电探测器的三自由度安装位置 ,以及探测器光敏面的离焦量的特殊关系 ,建立了称之为模型 1的四像限光电探测器光路逆模型。同时以探测器特定时刻输出电压作为观测量 ,建立了称之为模型 2的探测器光路逆模型。并以探测器光敏面的离焦量为例 ,给出了两个模型的实测值和模型 1的重复性测试值。重复性测试值表明 ,模型 1的最大重复测试误差只有 0 .0 15mm。实测结果证明 ,模型 1的检测精度可以达到微米级 ,而用探测器特定时刻输出电压建立的逆模型的检测精度只能达到毫米级 。 In this paper, the problem about observation space of detector is discussed. A method of modeling the anti models of ray path from electric signal to parameter of ray path using neural network is introduced. Making use of the special relations between the parameters of fitting lines at the crossover points of outputs of four quadrant photodetecor and the three dimensional free position, the distance between photosurface and focus of photodetector, the anti model called model 1 of ray path of four quadrant photodetector is modeled. At the same time, a model called model 2 is modeled using the voltages of the output of photodetector at special time as observed quantities. Taking measuring for the distance between photosurface and focus of photodetector as an example, the measuring results are given, and the measuring results for repeatability of model 1 are also given. The measuring results for repeatability of model 1 show that the maximal measuring error is only 0.015 mm. And the measuring results show that the measuring accuracy of model 1 reaches micron level and that of model 2 reaches only millimeter level. Thus, that using the parameters of fitting lines at the crossover points of outputs of four quadrant photodetecor as observation quantities is ahead of that using the voltages of outputs of photodetector at special time as observation quantities
出处 《中国激光》 EI CAS CSCD 北大核心 2004年第5期617-620,共4页 Chinese Journal of Lasers
关键词 光电子学 光电探测器 光路逆模型 神经网络 optoelectronics photoelectric detector anti-model of ray-path neural network (NN)
  • 相关文献

参考文献4

  • 1安凯,汪红熳,任戈,叶步霞,傅承毓,马佳光.四象限探测仪测角新算法[J].激光与红外,2001,31(6):328-329. 被引量:22
  • 2G. Chryssolouris, M. Domroese. Sensor synthesis for control of manufacturing process [J]. Journal of Engineering for Industry, 1992, (5):144.
  • 3Zhang Y. , Liu J. H. , Zhang Y. H. a al.. Cross sensitivity reduction of gas sensor using genetic neural network [J]. Optical Engineering, 2002, 41(3) :615-625.
  • 4徐科军,殷铭.基于FLANN的腕力传感器动态建模方法[J].仪器仪表学报,2000,21(1):92-94. 被引量:28

二级参考文献5

共引文献48

同被引文献14

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部