期刊文献+

一类线性约束非线性规划的初始神经网络 被引量:3

New primal neural networks for solving a class of nonlinear programs with linear constraints
下载PDF
导出
摘要 目的 建立求解一类线性约束非线性凸规划的简单可行的神经网络。方法 射影方法和Lyapunov直接方法。结果 基于问题自身的结构特点和射影方法,提出了求解一类线性约束非线性凸规划的两个神经网络模型。定义了Lyapunov函数,严格证明了它们是渐近稳定的。此外,在一定的条件下证明了其指数稳定性。新模型的规模均与原问题相同,不含任何参数,并且其稳定性不需要Lipschitz条件,模拟实验表明新模型不仅可行,而且有效。结论 建立了求解一类线性约束非线性凸规划的两个简单可行的初始神经网络,并在适当的条件下分别证明了其渐近稳定性和指数稳定性。 AimTo construct the simple and feasible neural networks for solving a class of linearly constrained convex programming problems.MethodsThe projection method and Lyapunov′s direct method.ResultsTwo primal neural-network models for solving a class of linearly constrained convex programming problems are proposed by means of their inherent properties and the projection method. The proposed models have been strictly shown to be asymptotically stable by defining their Lyapunov functions.Furthermore,the global exponential stability of the proposed neural networks is also proved under mild conditions.New models have the same size as the original problem,no Lipschitz condition and no extra parameter.The feasibility and effectiveness of the proposed neural networks are supported by the simulation experiments.ConclusionTwo simple and feasible primal neural-network models for solving a calss of linearly constrained convex programming problems are constructed,and their asymptotic stability and the global exponential stability are proved under mild conditions,respectively.
作者 杜丽莉
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第2期137-141,共5页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(10071048) 陕西师范大学重点科研项目
关键词 非线性凸规划 线性约束 神经网络 稳定性 收敛性 nonlinear programming linear constraint neural network stability convergence
  • 相关文献

参考文献11

  • 1BAZARAA M S, SHERAL H D, SHETTY C M.Nonlinear Programming-theory and Algorithm. Second edition[M]. New York: John Wiley, 1993.1-22.
  • 2WU L, SWETITS J. A new algorithm for solving strictly convex quadratic programs[J]. SIAM Journal on Optimization, 1997,7(4) :595-619.
  • 3KENNEDY M P,CHUA L O. Neural networks for nonlinear programming[J]. IEEE Trans On Circuits and Systems, 1988,35(4) :554-562.
  • 4BOUZERDORM A, PATTISON T R. Neural network for quadratic optimization with bound constraints[J].IEEE Trans on Neural Networks, 1993, 4(4): 293-304.
  • 5VAZQUEZ A R, CASTRO R D, HUERTAS J L, et al. Nonlinear switched capacitor' neural networks' for optimization problems[J]. IEEE Transactions on Circuits and Systems, 1990, 37(3):384-397.
  • 6GLAZOS A R, HUI S, ZAK S H. Sliding modes in solving convex programming problems [J]. SIAM Journal on Control and Optimization, 1998, 36(2):680-697.
  • 7XIA Y S, WANG J. Primal neural networks for solving convex quadratic prograrns[J]. Neural Networks,1999,1: 582-587.
  • 8KINDERLEHRER D, STAMPACCHIA G. An Introduction to Variational Inequalities and Their Applications[M]. New York: Academic Press, 1980.
  • 9AVRIEL M. Nonlinear Programming: Analysis and Methods[M]. New Jersey: Prentice-Hall, Englewood Cliffs, 1976. 126-129.
  • 10ORTEGA T M, RHEINBOLDT W C. Iterative Solution of Nonlinear Equation in Several Variables [M].New York: Academic Press, 1970. 108-109.

同被引文献7

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部