期刊文献+

图像域正则化特征增强SAR成像方法 被引量:3

Feature-Enhanced SAR Imaging Method Based on Regularization in Image Domain
下载PDF
导出
摘要 通过分析SAR成像过程和正则化特征增强方法的特点,提出了一种在图像域进行正则化特征增强的成像方法。实验结果表明,本文方法能较好地抑制旁瓣和噪声,提高SAR图像的对比度,保护目标并提高图像的分辨率,且计算量比传统方法大大减小,有效提高了计算效率。 By analyzing the characters of SAR imaging and feature-enhanced SAR imaging methodbased on regularization. this paper presents the feature-enhanced SAR imaging method based on regulariza-tion in image domain. The experimental results demonstrate that our method can efficiently suppress thesidelobe and noise, improve the contrast of image. protect the targets and improve the resolution of image.Compared with the traditional method, our method improves greatly the computation efficiency.
出处 《雷达科学与技术》 2003年第4期237-241,共5页 Radar Science and Technology
基金 2001年全国优秀论文作者专项基金(No.200110) 国家自然科学基金(No.60272013)
关键词 图像域 正则化 SAR 特征增强 图像分辨率 图像数据收集 成像方法 image domain regularization SAR feature enhancing
  • 相关文献

参考文献10

  • 1Mujdat Cetin;W C Karl.A Statistical Topographic Approach to Synthetic Aperture Radar Image Reconstruction,1997.
  • 2Mujdat Cetin;W C Karl;D A Castanon.Evaluation of a Regularized SAR Imaging Technique Based on Recognition-Oriented Features[C],2000.
  • 3魏钟铨.合成孔径雷达卫星,2001.
  • 4张澄波.综合孔径雷达--原理、系统分析和应用,1989.
  • 5邹谋炎.反卷积和信号复原,2001.
  • 6D L Donoho.Sparse Components of Images and Optical Atomic Decompositions,1998.
  • 7Xuejun Liao;Zheng Bao.Radar Target Recognition Using Superresolution Range Profiles as Feature[J],1998.
  • 8Mujdat Cetin;W C Karl.Feature-Enhanced Synthetic Aperture Radar Image Formation Based on Non-Quadratic Regularization[J],2001(04).
  • 9谢美华,王正明.基于正则化变分模型的SAR图像增强方法[J].红外与毫米波学报,2005,24(6):467-471. 被引量:12
  • 10周宏潮,朱炬波,王正明.SAR图像增强的前向-后向扩散方程方法[J].电子学报,2004,32(12):2070-2073. 被引量:6

二级参考文献16

  • 1王怀野,张科,李言俊.各向异性滤波在红外图像处理中的应用[J].红外与毫米波学报,2005,24(2):109-113. 被引量:24
  • 2洪汉玉,张天序,余国亮.航天湍流退化图像的极大似然估计规整化复原算法[J].红外与毫米波学报,2005,24(2):130-134. 被引量:24
  • 3M Cetin,W C Karl.Feature-enhanced synthetic aperture radar Image formation based on nonquadratic regularization[J].IEEE Trans,2001,IP-10(4):623-631.
  • 4J Weickert.A review of nonlinear diffusion filtering[A].Scale-Space Theory in Computer Vision[C].Berlin:Springer,1997.3-28.
  • 5G Gilboa,Nir A Sochen,Y Zeevi.Forward and backward diffusion processesfor adaptive image enhancement and denosing[J].IEEE Trans,2002,IP-11(7):689-703.
  • 6G Gilboa,Nir A Sochen,Y Zeevi.Image sharpening by flows based on triple well potentials[J].Journal of Mathematical Imaging And Vision,2004,20(1):121-131.
  • 7Frank M Candocia,Jose C Principe.A Method Using Models to Superresolve SAR Imagery[A].Proceedings of SPIE:Algorithms for Synthetic Aperture Radar Imagery[C].Orlando:SPIE,V.1998.197-207.
  • 8Air Force Research Laboratory.Model Based Vision Laboratory,Sensor Data Management System MSTAR [DB/OL].http://www.mbvlab.wpafb.af.mil/public/sdms/datasets/mstar/
  • 9Air Force Research Laboratory,Model Based Vision Laboratory,Sensor Data Management System ADTS [DB/OL].http://www.mbvlab.wpafb.af.mil/public/sdms/datasets/adts/
  • 10M Cetin,W C Karl,D A Castanon.Evaluation Of a Regularized SAR Imaging Technique Based On Recognition-Oriented Features[A].Algorithms for Synthetic Aperture Radar Imagery VII[C].Orlando,FL,USA:SPIE,2000.40-51.

共引文献16

同被引文献19

  • 1王怀野,张科,李言俊.各向异性滤波在红外图像处理中的应用[J].红外与毫米波学报,2005,24(2):109-113. 被引量:24
  • 2洪汉玉,张天序,余国亮.航天湍流退化图像的极大似然估计规整化复原算法[J].红外与毫米波学报,2005,24(2):130-134. 被引量:24
  • 3桂良启,黄全亮,郭伟,张祖荫.基于二维天线增益函数的面目标视在温度反演[J].电波科学学报,2005,20(2):185-188. 被引量:1
  • 4张彦梅,于敬波.基于Zoom-FFT变换域的坦克被动式毫米波探测识别方法[J].南京理工大学学报,2007,31(3):346-349. 被引量:5
  • 5PIROGOV Y A, GLADUN V V, TISCHENKO D A, et al. Passive millimeter-wave imaging with superresolution[C]//Bruzzone L. Image and Signal Processing for Remote Sensing X. Bellingham: SPIE, 2004: 72-83.
  • 6PILES M, CAMPS A, VALL. LLOSSERA M, et al. Spatial resolution enhancement of SMOS data: a combined Fourier wavelet approach[C]//IGARSS. Boston: IEEE, 2008: 1080-1083.
  • 7LETTINGTON A H, ALEXANDER N E, Constrained image restoration applied to passive millimeter-wave images[C]//Bruzzone L. Image and Signal Processing for Remote Sensing X. Bellingham: SPIE, 2004:334-343.
  • 8CETIN M, KARL W C. Feature-preserving regularization method for complex-valued inverse problems with application to coherent imaging[J]. Optical Engineering, 2006, 45(1): 1-11.
  • 9CETIN M, BOSSY E, CLEVELAND R, et al. Sparsity-driven sparse-aperture ultrasound imaging[C]// IEEE International Conference on Acoustics, Speech, and Singal Processing. Toulouse: IEEE, 2006: 1-4.
  • 10MAIRAL J, ELAD M, SAPIRO G. Sparse representation for color image restoration[J]. IEEE Transactions on Image Processing, 2008, 17(1): 53-69.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部