期刊文献+

一维单个守恒律的一类二阶、几乎熵耗散的格式

A Second-order Essentially Entropy-Dissipating Scheme for Scalar Conservation Law in One Space Dimension
下载PDF
导出
摘要 本文考虑一维单个守恒律方程,对其设计了一个基于熵耗散的非线性守恒型差分格式.本格式的数值流函数是Lax-Freidrichs格式和Lax-Wendroff格式数值流函数的凸组合,凸组合中的系数是由考虑耗散熵来决定的.这样在解的光滑区域内,格式几乎、甚至完全是Lax-Wendroff格式,而在解的间断处,格式几乎、甚至完全是Lax-Freidrichs格式.从而消除了间断附近的非物理振荡,实现了计算的非线性稳定性.理论分析表明本格式在解的非极值点处是二阶精度的,而在解的极值点处至少有一阶精度.数值试验表明格式是有效的. In this paper, we are concerned with scalar conservation law in one space dimension, we design a nonlinear conservative difference scheme based on entropy-dissipation. The scheme's numerical flux is a convex combination of the Lax-Fridrichs and Lax-Wendroff scheme's fluxes. The coefficient of the combination is computed by the consideration of entropy dissipation. In smooth regions,the scheme is nearly or allmost Lax-Wendroff, and near discontinuities, the scheme is nearly or allmost Lax-Freidrichs. Numerical examples are presented to show the efficiency of the scheme.
机构地区 上海大学理学院
出处 《应用数学与计算数学学报》 2003年第2期15-24,共10页 Communication on Applied Mathematics and Computation
关键词 守恒律 非线性稳定 熵耗散 差分格式 数值流函数 conservation law, nonlinear stability, entropy-dissipation
  • 相关文献

参考文献14

  • 1Harten A. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys., 1983,49:357-393.
  • 2Goodman J.B., LeVeque R.J. A geometric approach to high resolution TVD schemes. SIAM J. Num. Ahal., 1988, 25:268-284.
  • 3Sweby P. K. High resolution schemes using flux limiters for hyperbolic conservation laws.SIAM J. Num. Anal., 1984, 21:995-1011.
  • 4Osher S., Chakravarthy S. High Resolution Schemes and the Entropy Condition. STAM J.Numer. Ahal., 1984, 21:955-984.
  • 5Lax P.D. Shock Waves and Entropy. Contributions to Nonlinear Functionial Analysis (Zarantonello E.A., ed.), Academic Press, New York, 1971, 603-634.
  • 6Shu Chi-Wang. TVB uniformly high-order schemes for conservation laws. Math. Comput.,1987, 47:105-121.
  • 7Harten A., Osher S., Engquist B., Chakravarthy S. Some results on unifomly high-order accurate essentially nonoscillatory schemes. Appl. Numer. Math., 1986, 2:347-377.
  • 8Harten A., Engquist B., Osher S., Chakravarthy S. R. Unifomly high order accurate essentially non-oscillatory schemes, Ⅲ. J. Comput. Phys., 1987, 71:231-303.
  • 9Harten A. ENO schemes with subcell resolution. J. Comput. Phys., 1987, 83:148-184.
  • 10LeVeque R.J. Numerical Methods for Conservation Laws. Birkhauser-verlag, Basel, Boston,Berlin, 1990.

二级参考文献11

  • 1[1]P. Colella and P. R. Woodward, The piecewise-parabolic method(PPM) for gas dynamical simulation, J. Comput. Phys., 54 (1984), pp. 174-201.
  • 2[2]A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys.,49 (1983), pp. 357-393.
  • 3[3]A. Harten, On a Class of High Resolution Total-Variation-Stable Finite-Difference schemes, SIAM, 21 (1984), pp. 1-23.
  • 4[4]A. Harten, and S. Osher, Uniformly High-order Accurate Nonoscillatory Scheme I*,SIAM J. Numer. Anal., 24 (1987), pp. 279-309.
  • 5[5]A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy, Unifomly high order accurate essentially non-oscillatory schemes,Ⅲ, J. Comput. Phys., 71 (1987), pp. 231-303.
  • 6[6]A. Harten, ENO schemes with subcell resolution, J. Comput. Phys., 83 (1987), pp.148-184.
  • 7[7]G. Jiang and C. Shu, Efficient implementation of weighted ENO schemes, J. Comput.Phys. 126 (1996), pp. 202-228.
  • 8[8]D. Mao, Entropy satisfaction of a conservative shock tracking method, SIAM J. Numer.Anal.,36 (1999), pp. 529-550.
  • 9[9]S. Osher, and S. Chakravarthy, High Resolution Schemes and the Entropy Condition,STAM J. Numer. Anal., 21 (1984), pp. 955-984.
  • 10[10]Chi-wang Shu, Efficient implementation of essentially non-oscillatory shock-capturing schemes, Ⅱ, J. Comput. Phys., 83 (1989), pp. 32-78.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部