摘要
本文研究90年代初提出的Runge-Kutta间断Galerkin有限元方法,给出该方法的精度分析,通过经典算例验证该方法处理间断问题、捕捉锐利波形的能力,并将其推广到求解浅水问题.针对坝底无摩擦,无坡度的理想情形进行讨论,给出方溃坝和圆溃坝问题的数值模拟结果.
In this paper we study the Runge-Kutta discontinuous Galerkin finite element method pro-posed at 1990's. We gave the accuracy analysis,proved the ability to capture the sharp wave in solving discontinuous problems. In the mean time,the method is generalized to solve shallow water equations.The ideal problems without friction and slope on bed are discussed.The simulations of square and circular dam problems are given.
出处
《应用数学与计算数学学报》
2003年第2期40-48,共9页
Communication on Applied Mathematics and Computation
基金
内蒙古大学青年科学基金(ND0107)
博士科研启动项目的资助.
关键词
有限元方法
精度分析
方溃坝
圆溃坝
数值模拟
Runge-Kutta discontinuous Galerkin finite element method, shallow water equa-tions , numerical simulations.