期刊文献+

溃坝问题的间断有限元方法 被引量:3

Discontinuous Finite Element Method for Dam Break Problems
下载PDF
导出
摘要 本文研究90年代初提出的Runge-Kutta间断Galerkin有限元方法,给出该方法的精度分析,通过经典算例验证该方法处理间断问题、捕捉锐利波形的能力,并将其推广到求解浅水问题.针对坝底无摩擦,无坡度的理想情形进行讨论,给出方溃坝和圆溃坝问题的数值模拟结果. In this paper we study the Runge-Kutta discontinuous Galerkin finite element method pro-posed at 1990's. We gave the accuracy analysis,proved the ability to capture the sharp wave in solving discontinuous problems. In the mean time,the method is generalized to solve shallow water equations.The ideal problems without friction and slope on bed are discussed.The simulations of square and circular dam problems are given.
作者 李宏 文宗川
出处 《应用数学与计算数学学报》 2003年第2期40-48,共9页 Communication on Applied Mathematics and Computation
基金 内蒙古大学青年科学基金(ND0107) 博士科研启动项目的资助.
关键词 有限元方法 精度分析 方溃坝 圆溃坝 数值模拟 Runge-Kutta discontinuous Galerkin finite element method, shallow water equa-tions , numerical simulations.
  • 相关文献

参考文献12

  • 1W.H.Reed and T.R.Hill. Triangular mesh methods for the neutron transport equatuoon. Los Alamos Scientific Laboratory Report LA-UR-73-479, 1973.
  • 2Cushman-Roisin B, Esenkov OE, Mathias BJ. A particle-in-cell method for the solution of two-layer shallow-water equations. Int. J. Numer. Meth. Fluids, 2000, 32(5): 515-543.
  • 3Dawson CN, Martinez-Canales ML. A characteristic-Galerkin approximation to a system of shallow water equations. Numerische Mathematik, 2000, 86(2): 239-256.
  • 4Tseng MH, Chu CR. Two-dimensional shallow water flows simulation using TVD-MacCormack Scheme. J. ofHydraulic Research, 2000, 38(2): 123-131.
  • 5F.Alcrudo and P. Garcia-navarro. A high-resolution Godunov-type scheme in finite volumes for the 2D shallow-water equations. Int. J. Numer. Meth. Fluids, 1993, 16: 489-505.
  • 6G.Chavent and B.Cockburn. The local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws, RAIRO, Model. Math. Anal. Numer, 1989, 23: 565.
  • 7B.cockburn and C.W.Shu.TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws Ⅱ:General framework.Math. Comp., 1989, 84:90-113.
  • 8B.cockburn,S.Jou and C.W.Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws Ⅳ:The multidimensional case. Math. Comp.1990, 54: 545-581.
  • 9B.cockburn,S.Y.Lin and C.W.Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws Ⅲ:One dimensional systems. J. Comput.Phys., 1989, 84: 90-113.
  • 10B.cockburn and C.W.Shu.TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws Ⅴ:Multidimensional systems.J. Comput. Phys.,1998, 141: 199-224.

同被引文献47

引证文献3

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部