期刊文献+

剩余寿命增补变量法在排队模型M/GI/1/K中的应用 被引量:4

On the Supplementary Remaining Life Variable Technique in M/G/1/K Queueing Systems
下载PDF
导出
摘要 本文尝试用剩余寿命作为增补变量,建立了经典排队模型M/GI/1/K的密度 演化方程,并应用递归的方法得到了模型队长平稳分布的精确解. In this paper, we choose the remaining life as the supplementary variable to establish the density evolution equation of the classical queueing models of M/GI/1/K, and then obtain the explicit solutions of the stationary queue distributions by a recursive method.
机构地区 上海大学理学院
出处 《应用数学与计算数学学报》 2003年第2期70-74,共5页 Communication on Applied Mathematics and Computation
关键词 排队模型 增补变量法 平稳队长分布 递归方法 精确解 queueing model, supplementary variable technique, stationary queue distribu-tion, recursive method, explicit solution
  • 相关文献

参考文献4

  • 1Kendall,D.G. Some Problems in the Theory of Queues. Journal of Royal Statistic Society,1951, B13:151-173.
  • 2Cox,D.R. The Analysis of Non-Markovian Stochastic Processes by the Inclusion of Supplemen-tary Variables. Prob. Camb. Phil. Soc., 1955, 51:433-441.
  • 3Cohen,J.W. The Singer Server Queue (Second Edition). North-Holland, Amsterdam,1982.
  • 4Chaudhry, M.L., Gupta,U.C., Agarwal,M. On Exact Computational Analysis of Distributions of Numbers in Systems for M/G/1/N+1 and GI/M/1/N+1 Queues Using Roots. Computers and Operation Research, 1991,8(18):679-694.

同被引文献23

  • 1张元林,汪风泉,吴少敏.两个不同部件并联可修系统的可靠性分析[J].东南大学学报(自然科学版),1994,24(5):71-78. 被引量:5
  • 2Lee T. M/G/1/N queue with vacation time and exhaustive service discipline[J].Opns Res,1984(32) :774-784.
  • 3Doshi B T. Queue System with Vacations-a Survey[J]. Queueing Systems, 1986 (1) : 29--66.
  • 4Takagi H. Time-dependent Process of M/G/1 with Exhaustive Serviee[J]. J Appl Prob, 1992(29) :418--424.
  • 5Shoji,Kasaharam. M/G/1/K System with Push-out Scheme under Vacation Policy[J].Journal of Applied Mathematics and Stochastic Analysis, 1996 (9) : 143-- 157.
  • 6Choi B, Chang Y. Single Server Retrial Queues with Priority Calls[J]. Mathematical and Computer Modelling, 1999 (30) :7--32.
  • 7Mandelbaum A, Yechiali U. The conditional residual service time in the M/G/1 queue[J]. Management Science, 1979, 174-187.
  • 8de Boer P T, Nicola V F, van Ommeren J C W. The remaining service time upon reaching a high level in M/G/1 queues[J]. Queueing Systems, 2001, 39:55 78.
  • 9Chydzinski A. On the remaining service time upon reaching a given level in M/G/1 queues[J]. Queueing Systems, 2004, 47: 71-80.
  • 10Gupta U C, Sikdar K. The finite-buffer M/G/1 queue with general bulk-service rule and single vacation[J]. Performance Evaluation, 2004, 57(2): 199-219.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部