期刊文献+

基于候选项集个数上阶的增量式关联规则更新算法 被引量:4

A General Incremental Algorithm for Mining Association Rules
下载PDF
导出
摘要 提出了一种有效的增量式关联规则挖掘算法IAR ,算法的特点在于 :提出并采用了基于候选项集个数上阶的选择扫描数据库的机制 ,可有效减少数据库的扫描次数 ;算法是一种通用的增量式算法 ,提出了最小支持度和数据库均改变时 ,增量式挖掘中的重要性质 ,从而可充分利用上一次挖掘的结果 ,有效减少候选项集的数目 .并且提出了基于组合数学和项集等价类理论的计算候选项集个数的上阶的方法 .通过大量的数据实验 ,表明算法的效率比已有的算法有了很大提高 . Mining of association rules is one of the most important fields in data mining.In this paper,a new general incremental algorithm IAR for mining association rules is presented.The disting uishing feature of IAR is as follows:First,the selective scan strategy is adopted,which is based on the upper bound on the number of candidate itemsets;Second,IAR can efficiently update the discovered rules when the value of support threshold is changed,new transactions are added to the database,and obsolete ones are removed from it.Furthermore,based on the Kruskal-Katona theorem and the itemset equivalence class theory,we devise the technique for calculating the maximal number of candidate itemsets.Experiments show the prominent performance of the algorithm IAR.
出处 《电子学报》 EI CAS CSCD 北大核心 2004年第5期731-734,共4页 Acta Electronica Sinica
基金 国家自然科学基金 (No .60 1 730 66)
关键词 关联规则 数据挖掘 知识发现 频繁项集 增量式挖掘 association rules data mining knowledge discovery frequenct itemsets incremental mining
  • 相关文献

参考文献9

  • 1R Agrawal,T Imielinski,A Swami.Mining association rules between sets of items in large databases [A].Proceeding of 1993 SIGMOD International Conference on Management of Data [C].New York:ACM press,1993.207-216.
  • 2J S Park,M S Chen,P S Yu.Using a hash-based method with transaction trimming for mining association rules [J].IEEE Transactions on Knowledge and Data Engineering,1997,9:813-825.
  • 3R Agarwal,C Aggarwal,et al.A tree projection algorithm for generation of frequent itemsets [J].Journal of Parallel and Distributed Computing (Special Issue on High Performance Data Mining),2001:1-23.
  • 4Jiawei Han,Jian Pei,Yiwen Yin.Mining frequent patterns without candidate generation [A].Proceeding of 2000 ACM SIGMOD International Conference on Management of Data [C].New York:ACM press,2000.1-12.
  • 5D W Cheung,S D Lee,Benjamin Kao.A general incremental technique for maintaining discovered association rules [A].Proceedings of the Fifth International Conference on Database Systems for Advanced Applications [C].World Scientific Press,Singapore,1997.185-
  • 6Chang-Hung Lee,Cheng-Ru Lin,Ming-Syan Chen.Sliding window filtering:An efficient algorithm for incremental mining [A].Proceedings of the ACM tenth International Conference on Information and Knowledge Management [C].New York:ACM press,2001.263-270.
  • 7F Geerts,B Goethals,J Van den Bussche.A tight upper bound on the number of candidate patterns [A].IEEE International Conference on Data Mining [C].USA:IEEE Computer Society Press,2001.155-162.
  • 8周海岩.关联规则的开采与更新[J].软件学报,1999,10(10):1078-1084. 被引量:40
  • 9HanJiawei MichelineKamber 范明 孟小峰 译.数据挖掘概念与技术 [M].北京:机械工业出版社,2001..

二级参考文献2

共引文献40

同被引文献80

引证文献4

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部