摘要
有界函数空间B(I)中的点态收敛不具备完备性 .B(I)中的均匀收敛拓扑具有 3条特征性质 ,强于点态收敛的完备范数拓扑只有均匀收敛拓扑 .Arzela给出的连续函数列极限函数连续的充要条件 ,其中拓扑不可能是范数拓扑 .
Pointwise convergence has no completeness in bounded function space B(I). The topology of uniform convergence has three characteristic properties in B(I). A complete norm topology stronger than the topology of poingwise convergence can only be one of uniform convergences. Arzela gave a necessary and sufficient condition of continuation of limit functions in sequences of continuous functions, among which topology can not be a norm topology.
出处
《邵阳学院学报(自然科学版)》
2004年第1期1-1,25,共2页
Journal of Shaoyang University:Natural Science Edition
基金
湖南省教育厅科研基金项目
关键词
点态收敛
均匀收敛
赋值映射
弱拓扑
闭算子
闭图象定理
拓扑同胚
B(I)空间
pointwise convergence
uniform convergence
evaluation mapping
weak toplolgy
closed operator
closed graph theorem
topological homomorphism