摘要
In the experiment to determine the plasma electron temperature, a modifiedmultichannel PIN diodes assembly is used as detectors to record the X-ray pulses from a low-energyMather-type plasma focus device energized by a 32μF, 15 kV (3.6kJ) single capacitor, with deuteriumas a filling gas. The ratio of the integrated bremsstrahlung emission transmitting through foils tothe total incident flux as a function of foil thickness at various temperatures is obtained forfoil absorbers of material. Using 3 μm, 6 μm, 9 μm,12 μm,15 μm and 18 μm thick aluminiumabsorbers, the transmitted X-ray flux is detected. By comparing the experimental and theoreticalcurves through a computer program, the plasma electron temperature is determined. Results show thatthe deuterium focus plasma electron temperature is about 800 eV.
In the experiment to determine the plasma electron temperature, a modifiedmultichannel PIN diodes assembly is used as detectors to record the X-ray pulses from a low-energyMather-type plasma focus device energized by a 32μF, 15 kV (3.6kJ) single capacitor, with deuteriumas a filling gas. The ratio of the integrated bremsstrahlung emission transmitting through foils tothe total incident flux as a function of foil thickness at various temperatures is obtained forfoil absorbers of material. Using 3 μm, 6 μm, 9 μm,12 μm,15 μm and 18 μm thick aluminiumabsorbers, the transmitted X-ray flux is detected. By comparing the experimental and theoreticalcurves through a computer program, the plasma electron temperature is determined. Results show thatthe deuterium focus plasma electron temperature is about 800 eV.
基金
This work was partially supported by Quaid-i-Azam University research Grant
Pakistan Science Foundation Project
Pakistan Atomic Energy Commission Project for Plasma Physics