期刊文献+

解分数阶Bagley-Torvik方程的一种计算有效的数值方法 被引量:12

A Computationally Effective Numerical Method for the Fractional-order Bagley-Torvik Equation
下载PDF
导出
摘要 给出分数阶Bagley Torvik方程解的存在性和惟一性,导出了用格林函数表示分数阶Bagley Torvik方程的解析解.利用Riemann Liouville定义和Gr櫣nwald Letnikov定义之间的关系,提出了求解分数阶Bagley Torvik方程的一种更有效的数值方法.最后给出数值例子. In this paper, the existence and uniqueness of solution for the fractional-order Bagley-Torvik equation is given. The analytical solution of fractional-order Bagley-Torvik equation is derived by the corresponding Green's function.Using the relationship between the Riemann-Liouville definition and the Grünwald-Letnikov definition, a computationally effective method is proposed for the fractional-order Bagley-Torvik Equation.Finally , some numerical examples are given.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第3期306-311,共6页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(10271098)资助
关键词 分数阶 Bagley-Torvik方程 Riemann-Liouville定义 Gruenwald-Letnikov定义 数值方法 fractional-order Bagley-Torvik equation Riemann-Liouville definition Grünwald-Letnikov definition numerical method
  • 相关文献

参考文献11

  • 1Rionero S,Ruggeri T.Waves and Stability in Continuous Media[M].Singapore:World Scientific,1994.
  • 2Podlubny I.Fractional Differential Equations[M].New York:Academic Press,1999.
  • 3Benson D A,Wheatcraft S W,Meerschert M M.Application of a fractional advection-despersion equation[J].Water Resour.Res.,2000a,36(6):1 403-1 412.
  • 4Benson D A,Wheatcraft S W,Meerschert M M.The fractional-order governing equation of Lévy motion[J].Water Resour.Res.,2000b,36(6):1 413-1 423.
  • 5Bagley R L,Torvik P J.On the appearance of the fractional derivative in the behavior of real materials[J].J.Appl.Mech.,1984,51:294-298.
  • 6Samko S G,Kilbas A A,Marichev O I.Fractional Integrals and Derivatives:Theory and Applications[M].USA:Gordon and Breach Science Publishers,1993.
  • 7Oldham K B,Spanier J.The Fractional Calculus[M].New York and London:Academic Press,1974.
  • 8Miller K S,Ross B.An Introduction to the Fractional Calculus and Fractional Differential Equations[M].New York:John Wiley,1993.
  • 9Rektory K.Handbook of Applied Mathematics[M].Vols.I,II.Prague:SNTL,1988 (in Czech).
  • 10Doetsch.Anleitung zum Praktischen Gebrauch der Laplace-transformation,Oldenbourg[M].Moscow:Munich,1956.

同被引文献123

引证文献12

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部