摘要
设N_i为第i次分蘖的理论数,k为分蘖的最高次数,n为主茎出叶数,则N_i和k均是n的函数。如果主茎芽鞘节和分蘖的分蘖鞘节均不发生分蘖,则k=(n—1)/3,Ni=C_(n-2i-1)~i(i=1,2,…,k)。如果主茎芽鞘节和分蘖的分蘖鞘节均能发生分蘖,则k=(n—1)/2,N_i=C_(n-i-1)~i(i=1,2,…,k)。以上k值均只取整数,不计小数。本文详细解释了建立上述公式的生物学基础,并以代数方法证明了理论分蘖数N_i和相应的组合数C_(n-2 i-1)~i或C_(n-i-1)~i为恒等关系。
Let N_i be the theoretical number of the ith order tillers, i.e., the number of til-lers from leaf tiller synchronously-emerged regularity, k the highest order of tillers andn the number of emerged leaves on main culm of a plant. Both N_i and k are thefunctions of n. When no tiller is produced at the nodes of coleoptile and scale-leaf,k=(n-1)/3 and N_i=C_(n-2 i-1)~i(i=1, 2,…, k). When the nodes of coleoptile andscale-leaf can produced tillers, k=(n-1)/2 and N_i=C_(n-i-1)~i(i=1, 2,…,k). Theabove ks are only taken as integers, regardless of decimals. In the paper, the biologi-cal base for establishment of the calculation was explained in detail, and the identicalrelationship between the theoretical number of tillers, N_i, and the correspondingnumber of combinations, C_(n-2 i-1)~i or C_(n-i-1)~i, was algebraically proved.
出处
《作物学报》
CAS
CSCD
北大核心
1992年第4期312-316,共5页
Acta Agronomica Sinica
关键词
小麦
大麦
水稻
分蘖
Leaf-tiller synchronously-emerged regularity
Number of tillers
Rice
Wheat
Barley