摘要
Using the estimates of character sums over Galoi8 rings and the trace de-scription of primitive sequences over Z_(p^e), we obtain an estimate for the frequency of theoccurrences of any element in Z_(p^e) in one period of a primitive sequence, which is betterthan Kuzmin's results if n >4e, where n is the degree of the generating polynomial ofthe primitive sequence.
文研究了Z_p^e上本原序列的元素分布。利用Galois环上的指数和估计和本原序列的迹表示,得到了Z_p^e中各元素在本原序列的一个周期中出现频率的一个估计。当n>4e时(n为本原序列生成多项式的次数),我们的估计优于Kuzmin的结果。
基金
Supported by NNSF of China (19971096,90104035)