期刊文献+

R^n上无奇点C^1流的强极限跟踪性

Strong Limit Shadowing Property of C^1 Flow on R^n without Singular Point
下载PDF
导出
摘要 本文证明了R^n上无奇点C^1流的双曲集附近具有强极限跟踪性。 The main result of this paper is that there is a neighborhood of the hyperbolic set of a C^1 flow on R^n without singular point on which thc flow has the strong limit shadowing property.
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2004年第2期285-290,共6页 数学研究与评论(英文版)
基金 国家自然科学(10371030) 河北师范大学青年基金(L2000q22)
关键词 渐近伪轨 强极限跟踪性 C^1流 双曲集 asymptotic pseudo orbit strong limit shadowing property C^1 flow hyperbolic set
  • 相关文献

参考文献7

  • 1WALTERS P. On the Pseudo Orbit Tracing Property and its Relationship to Stability [M]. Springer,Berlin, 1977, 231-244.
  • 2THOMAS R F. Stability properties of one-parameter flows [J]. Proc. London Math. Soc. , 1982, 45:479-505.
  • 3PILYUGIN S YU. Shadowing in Dynamical Systems [M]. Springer, Berlin, 1999.
  • 4PALMER K. Shadowing in Dynamical Systems, Theory and applications [M]. Klumer Academic Publishers, 2000.
  • 5EIROLA T, NEVANLINNA O, PILYUGIN S YU. Limit shadowing property [J]. Numer. Funct.Anal. Optim. , 1997, 15: 75-92.
  • 6BOWEN R. ω-limit sets for Axiom a diffeomorphisms [J]. J. Diff. Eqns., 1975, 18: 333--339.
  • 7朱玉峻,何连法.两类具有极限跟踪性的双曲系统[J].系统科学与数学,2003,23(3):321-327. 被引量:4

二级参考文献6

  • 1张筑生.微分动力系统原理[M].北京:科学出版社,1997..
  • 2Pilyugin S Yu. Shadowing in Dynamical Systems. Lecture Notes in Mathematics 1706, Springer,1999.
  • 3Bowen R. On Axiom A Diffeomorphism. Lecture Notes in Mathematics 668, Springer, Berlin,1977: 1-30.
  • 4Waiters P. On the Pseudo Orbit Tracing Property and its Relationship to Stability. Lecture Notes in Mathematics 668, Springer, Berlin, 1977: 231-244.
  • 5Eirola T, Nevanlinna O, Pilyugin S Yu. Limit shadowing property. Numer. Funct. Anal. Optimal.,1997, 18: 75-92.
  • 6Aoki N, Hiraide K. Topological Theory of Dynamical Systems,Recent Advance, North-Holland Mathematical Library, 1994, 52.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部