摘要
Let G(V,E) be a simple graph and G^k be a k-power graph defined byV(G~*) = V(G), E(G^k) = E(G) ∪{uv|d(u,v) =k} for natural number k. In this paper,it is proved that P_n^3 is a graceful graph.
设G(V,E)是一个简单图,对自然数k,当V(G^k)=V(G,E(G^k)=E(G)∪{uv|d(u,v)=k},则称图G^k为k-次方图,本文证明了图P_n^3的优美性。