期刊文献+

Optimality Condition for Infinite-dimensional Programming Problem with Operator and Bound Constraints

具有算子与有界约束的无穷维规划问题的最优性条件(英文)
下载PDF
导出
摘要 A first-order necessary condition for an infinite-dimensional nonlinear op-timization problem, which arises when the all-at-once method is employed to slove theoptimal control problems, is formulated and analyzed. Operator constraint and simplebound on part of the variables are both considered. Based on this optimality condition,the trust-region subproblems are built, then the trust region method rnay be employedto deal with the optimizatiou problem in infinite-dimensional space. 本文给出了当all-at-once方法用于求解最优控制问题而产生的一类同时具有算子和对部分变量具有简单界约束的无穷维最优化问题的一个一阶必要条件,构造了相应的信赖域子问题,据此,信赖域法可以用于求解无穷空间中的最优化问题。
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2004年第2期257-266,共10页 数学研究与评论(英文版)
关键词 optimal control operator constraint trust-region method 最优控制 算子约束 信赖域法
  • 相关文献

参考文献8

  • 1IFFE A D. Th eory of Extremal Problems [M]. North-Holland, Amsterdam, 1979.
  • 2MAURER H. First and second-order necessary and sufficient optimality conditions for infinitedimensional programming problems [J]. Math. Program., 1979, 16(2): 98-110.
  • 3COLEMAN T F, LI Y. An interior point trust-region approach for nonlinear minimization subject to bounds [J]. SIAM. J. Optinfization, 1996, 56(6): 418-445.
  • 4ULBRICH M, ULBRICH S. Global convergence of trust region interior point algorithms for ihfihite-dimensional non-convex minimization subject to pointwise bounds [J]. SIAM J.Control Optimization, 1999, 37(3): 731-764.
  • 5DENNIS J E, VICENTE L N. Trust-region interior-point algorithms for a class of nonlinear programming problems [J]. SIAM J. Control Optimization, 1998, 36(4): 1750-1794.
  • 6ULBRICH M, ULBRICH S. Superlhnear convergence of affine-scaling interior-point newton methods for infinite-dinensional nonlinear problems with pointwise bounds [J]. SIAM J.Control and Optimization, 2000, 38(5): 1938-1984.
  • 7POWELL J D. A New Algorithm for Unconstrained Optinization in Nonlinear Progranmning [M]. Academic Press, New York, 1970.
  • 8LUENBERGER D G. Optimization by Vector Space Methods [M]. John Wiley & Sons Inc.,New York, 1969.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部