摘要
在赋范空间中给出了集值映射的二阶切集的概念,利用二阶切集,定义了集值映射的二阶切导数。然后,获得了集值向量优化问题弱极小元的两个二阶最优性必要条件。
In this paper, the concept of second--order tangent set of set-valued maps is given
in the Euclidean space. Based on the second--order tangent set , the second-order tangent
derivative of set--valued maps is defined. Then, two necessary conditions for second-order
optimality for the weak minimal in the vector optimization of set-valued maps are obtained.
关键词
二阶切集
二阶切导数
弱极小元
second-order tangent set
second-order tangent derivative
weak minimal