期刊文献+

声光双稳态系统的周期驱动混沌

Acousto-optic Bistable System Chaos Anti-control via Periodic Signal Drive
下载PDF
导出
摘要 利用外周期信号对处于周期态的声光双稳态系统进行驱动 ,在合适的驱动强度和频率下 ,系统可能从周期态转换为李雅普诺夫指数意义下的混沌态 提出了这一混沌反控制方法 ,针对声光双稳态系统进行了计算模拟 。 An ideal that an acousto optical bistable system was driven by a periodic signal could change its state from stable to chaos was supposed in this paper. Results of numerical simulation shows that a chaotic system can be anti controlled by properly selected intensity drive signal. The reason of periodic signal drive chaos anti control was also analyzed
出处 《光子学报》 EI CAS CSCD 北大核心 2004年第5期557-559,共3页 Acta Photonica Sinica
关键词 声光双稳态系统 混沌反控制 周期驱动 李雅普诺夫指数 Acousto-optic bistable system Chaos control Periodic signal drive Lyapunov exponent
  • 相关文献

参考文献15

  • 1Ott E, Grebogi C, Yorke J A. Controlling chaos. Phys Rev Lett, 1990,64(11):1196-1199
  • 2Sinhna S, Ramaswamy R, Rao J S. Adaptive control in nonliner dynamics. Phys D, 1990,43(1):118-128
  • 3Hunt E R. Stablizing high-period orbits in a chaotic system: The diode resonator.Phys Rev Lett, 1991,67(15):1953-1960
  • 4Pyragas K. Continuous control of chaos by self-controlling feedback.Phys Rev Lett, 1992, 170(6) :421-427
  • 5Ottino J M,et al.Chaos, symmetry, and self-similarity: Exploiting order and disorder in mixing processes.Science, 1992,257:754-760
  • 6Schiff S J,Jerger K,Duong D H,et al.Controlling chaos in the brain.Nature, 1994,370:615-620
  • 7Brandt M E,Chen G.Bifurcation control of two nonlinear models of cardiac activity.IEEE Trans Circuits Syst, I: Fundam Theory Appl, 1997,44:1031-1034
  • 8Georgiou I T,Schwartz I B.Dynamics of large scale coupled structural/mechanical systems: A singular perturbation/proper orthogonal decomposition approach.J Appl Math,1999, 59:1178-1207
  • 9Kennedy M P,Kolumban G,Kis G.Chaotic modulation for Ro-bust digital communications over multipath channels.Int J Bifurcation Chaos Appl Sci Eng, 2000,10:695-718
  • 10Chen G,Lai D.Feedback control of Lyapunov exponents for discrete-time dynamical systems.Int J Bifurcation Chaos Appl Sci Eng,1996.1341-1349

二级参考文献12

  • 1高锦岳,郑植仁.Bragg型声光双稳系统的稳定性分析及调制效应[J].压电与声光,1989,11(3):25-30. 被引量:4
  • 2[10]Chen G R 1981 IEEE Trans. Circuits Syst. Soc. Newsletter, Match 1998, 1
  • 3[11]Chen G R and Lai D 1998 Int. J. Bifur. Chaos. 8 1585
  • 4[12]Wang X F and Chen G R 1999 Int. J. Bifur. Chaos. 9 1435
  • 5[13]Wang X F and Chen G R 2000 Int. J. Bifur. Chaos. 10 549
  • 6[14]Wang X F and Chen G R 2000 IEEE Trans, Circuits Syst. 47 1539
  • 7[15]Wu C W and Chua L O 1996 Int. J. Bif. Chaos. 6 801
  • 8[16]Nijmeijer H and Berghuis H 1995 IEEE Trans, Circuits Syst. 42 473
  • 9刘金刚,沈柯,周立伟.声光双稳系统混沌的控制[J].光学学报,1997,17(1):10-15. 被引量:9
  • 10Sinhna S,Phys D,1990年,43卷,1期,118页

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部