期刊文献+

基于小波差分统计特征的纹理缺陷检测方法 被引量:14

Texture defect inspection method using difference statistics feature in wavelet domain
下载PDF
导出
摘要 纹理表面缺陷检测是机器视觉中一个重要研究课题,可广泛应用于纺织品、木材、陶瓷等产品的表面质量控制。针对统计纹理图像,提出了一种小波差分统计纹理特征缺陷检测方法。该方法首先应用小波基函数对纹理图像进行一级分解,将图像划分为互不重叠的子窗口,然后计算其差分统计纹理特征值,最后采用Mahalanobis距离分类器进行缺陷判决。实验不仅证明了该方法的有效性,并表明该方法速度快,可用于实时在线检测。 Defect inspection for texture surface is one of important research problems in machine vision, and can be broadly used in surface quality control of different products, such as textile, lumber, ceramic tile and so on. A defect inspection method for statistics texture image, which uses texture difference statistics feature in wavelet domain, is presented. First, the texture image is decomposed by using wavelet base function, then the image can be partitioned into non-overlapping sub-windows and the texture difference statistic feature is computed. Finally each sub-window is classfied into defective or non-defective classes by using a Mahalanobis distance classifier. Experiments demonstrate the validity of our method, and show the potential possibility of real-time processing in an on-line inspection.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2004年第5期660-664,共5页 Systems Engineering and Electronics
关键词 自动视觉检测 缺陷检测 小波分解 差分统计 automated visual inspection defect inspection wavelet decomposition difference statistics
  • 相关文献

参考文献24

  • 1Newman T S, Jain A K. A Survey of Automated Visual Inspection [J].Computer Vision and Image Understanding, 1995, 61:231-262.
  • 2Sonka M, Hlavac V, Boyle R. Image Processing, Analysis, and Machine Vision(Second Edition)[M].北京:人民邮电出版社,2002.
  • 3Hoang K, Wen W, Nachimuthu A, et al. Achieving Automation in Leather Surface Inspection [J]. Computer in Industry, 1997,34:43-54.
  • 4Kwak C, Ventura J A, Tofang-Sazi K. A Neural Network Approach for Defect Identification and Clasaification on Leather Fabric [J]. Joumal of Intelligent Manufacturing, 2000, 11:485-499.
  • 5Stojanovic R, Mitropulos P, Koulamas C, et al. Real-Time Vision-Based System for Textile Fabric Inspection [J]. Real-Time Imaging, 2001,7:507-518.
  • 6Chang J, Han G, Valverde J M, et al. Cork Quality Classification System Using a Unified Image Processing and Fuzzy-Neural Network Methodology[J]. IEEE Trans. en Neural Networks, 1997, 8(4):964-974.
  • 7Brzakovic D, Beck H, Sufi N. An Approach to Defect Detection in Materials Characterized by Complex Textures [J]. Pattem Recognition,1990, 23(1/2): 99-107.
  • 8Packianather M S, Drake P R. Neural Networks for Classifying Images of Wood Venner (Part 2) [J]. Int. Joumal of Advanced Manufacturing Technology, 2000, 16:424-433.
  • 9Conners RW, Mcmillin C W, Lin K, et al. Identifying an Locating Surface Defects in Wood: Part of an Automated Lumber Processing System [J].IEEE Trans. on PAMI, 1983, 5(6):573-583.
  • 10Sobey P J, Semple E C. Detection and Sizing Visual Features on Wood Using Tonal Measures and a Clasaification Algorithm [J]. Pattern Recognition, 1989, 22(4):367-380.

同被引文献133

引证文献14

二级引证文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部