期刊文献+

来源于Selenomonas ruminantium的高比活植酸酶基因在毕赤酵母中的高效表达 被引量:11

Overexpression of Selenomonas ruminantium Phytase with High Specific Activity in Pichia pastoris
下载PDF
导出
摘要 应用酶解效率更高的高比活植酸酶是进一步提高植酸酶发酵效价、降低植酸酶生产成本的有效途径。根据毕赤酵母对于密码子的选择偏向,对来源于原核瘤胃微生物Selenomonasruminantium的高比活植酸酶基因phyS进行了密码子优化,将优化后的植酸酶基因phyS(m)与未优化的phyS插入到毕赤酵母转移载体pPIC9中,转化毕赤酵母得到重组子,在摇瓶水平上,phyS(m)的表达水平比phyS高10倍。在5L发酵罐中,优化后的植酸酶基因phyS(m)其蛋白表达量达到4mgml-1发酵液,效价达到1.6×106IUml-1,高于目前报道的各种植酸酶基因工程菌株的发酵效价。 Utilization of the phytase with high specific activity is a useful way to improve the fermentation potency ofphytase in recombinant host and decrease the production cost. The gene phyS encoding phytase with high specific activityfrom ruminal bacteria Selenomonas ruminantium was modified for the optimal expression according to bias in codon choiceof high expression gene in Pichia pastoris. Further, the modified phytae gene phyS(m) and the origin phytase gene phySwithout origin signal peptide sequence were cloned into the plasmid pPIC9 under the control of AOX1 promoter andintroduced into the host Pichia pastoris by electroporation, respectively. The concentration of the phytase expressed byP. pastoris with modified gene phyS(m) was 10 times higher than that of recombinant P. pastoris with non-modified genephyS in shake culture. In 5-liter fermentor in fed-batch fermentation, the expression level of phytase in recombinant P.pastoris with modified gene phyS(m) was increased to 4mgml-1 and 1.6106IUml-1, which was the highest in fermentationpotency among all of the reported recombinant strain.
出处 《中国农业科学》 CAS CSCD 北大核心 2004年第5期762-768,共7页 Scientia Agricultura Sinica
基金 国家高技术研究与发展"863"计划资助项目(2001AA214041)
关键词 高比活植酸酶 毕赤酵母 基因表达 植酸酶 Selenomonas ruminantium 植酸磷 饲料添加剂 Phytase with high specific activity Gene modification Overexpression Pichia pastoris
  • 相关文献

参考文献17

  • 1Nelson T S. The utilization of phytate phosphorus by poultry--A review. Poultry Science, 1967, 46:862-871.
  • 2Pallauf J, Rimbach G. Nutritional significance of phytic acid and phytase. Arch Tierernahr, 1997, 50(4):301-319.
  • 3Sharma C B, Goel M, Irshad M. Myo-inositol hexaphosphate as a potential inhibitor of α -amylases of different origins. Phytochemistry, 1978, 17:201-204.
  • 4Vohra A, Satyanarayana T. Phytase: Microbial sources,production, purification, and potential biotechnological applications. Critical Reviews in Biotechnology, 2003, 23(1):29-60.
  • 5Van Gorcom. Cloning and expression of phytase from Aspergillus. United States Patent, 5436156, 1995.
  • 6Yan B, Zhang C Y, Wang J H, Fan Y L. Recombinant Pichia pastoris overexpressing bioactive phytase. Science in China, (Series C), 1998, 41(3):330-336.
  • 7Yanke L J, Bae H D, Selinger L B, Cheng K J. Phytase activity of anaerobic ruminal bacteria. Microbiology,1998, 144:1 565-1 573.
  • 8Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A laboratory manual. (2nd). New York: Cold Spring Harbor Laboratory Press, 1989.
  • 9Sharp P M, Tuohy T M F, Mosurski K R. Codon usage in yeast: Cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Research, 1986,14(13):5 125-5 143.
  • 10Lassen S F, Breinholt J,φstergaard P R, Brugger R, Bischoff A, Wyss M, Fuglsang C C. Expression, gene cloning, and characterization of five novel phytase from four Basidiomycete fungi: Peniophora lycii, Agrocybe pediades,a Ceriporia sp., and Trametes pub

二级参考文献2

共引文献90

同被引文献198

引证文献11

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部