期刊文献+

两指标域流的正则性及局部鞅停止的不变性

Regularity of Two-parameter Filtrations and Invariance of Stopping for Local Martingales
下载PDF
导出
摘要 对两指标Wiener过程产生的完备σ-域族(F_z),z∈R_+~2。证明了如下的定理:若G_n和G是零点的有界停止的邻域。而且G_n↓G,则F_(G_n)↓F_G;若D为零点的有界停止邻域,R_z为矩形[0,z],D∧z=D∩R_z,则域流(F_(D∧Z))满足条件F1—F4;若(M_z)为关于域流(F_z)的局部平方可积鞅,D是使得Wiener过程W的停止,W^D为关于域流(F_(D∧Z))的Wiener过程的零点的有界停止邻域,则M的停止M^D为关于域流(F_(D∧Z))的局部平方可积鞅,从而M^D为(F)局部平方可积鞅。 In this paper following theorems for the complete α-fields(F_z) generated by the two-parameter Wiener process have been proved by authors. If G_n and G are bounded stopping neighborhood of zero point and G_n↓G, then fields F_(Gn)↓F_G. If D is a bounded stopping neighborhood of zero point, R, is a rectangle [0, z], z∈R_+~2, and D∧z=D∩R_2, then fields (F_(D∧Z)) satisfy the conditions F1—F4. If (M_Z) for fields (F_Z) is a local square integrable martingales, is a bounded stopping neighborhood of zero point, such that the stopping W^D of Wiener process W at D is (F_(D∧Z)) Wiener process, then the stopping M^D of M is (F_(D∧Z)) local square integrable martingale, and hence M^D is local square integable (F_Z) martingale.
出处 《纺织基础科学学报》 CAS 1992年第1期21-27,共7页
关键词 两指标域流 正则性 局部鞅停止 不变性 two-parameter Wiener process, bounded stopping neighborhood of zero point, local square integrable martingales, stopping of process
  • 相关文献

参考文献4

  • 1赵雅明.停止邻域的一些性质[J].鞍山师范学院学报,1988(4):21-24. 被引量:3
  • 2Gheorghi?? Zb?ganu,Xing Wu Zhuang. Two-parameter filtrations with respect to which all martingales are strong[J] 1982,Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete(4):437~452
  • 3R. Cairoli,J. B. Walsh. Régions d’arrêt, localisations et prolongements de martingales[J] 1978,Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete(4):279~306
  • 4R. Cairoli,John B. Walsh. Stochastic integrals in the plane[J] 1975,Acta Mathematica(1):111~183

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部