期刊文献+

锰酸锂充放电过程中的化学变化 被引量:1

Chemical changes of spinel lithium manganese complex oxide as cathode electrodes during charge-discharge cycling
下载PDF
导出
摘要 为了考察LiMn2O4锂离子蓄电池正极材料在充放电过程中的化学变化,采用高温固相法制备了尖晶石型LiMn2O4,并对其电化学性能进行了表征,利用X射线衍射分析的结果,结合Li-Mn-O相图,对LiMn2O4在多次循环充放电所发生的相变进行了研究。实验结果表明,其首次放电比容量为123 mAh/g,循环200次后的放电比容量为107 mAh/g;LiMn2O4发生歧化反应,以及在LiMn2O4微粒表面形成的Li2Mn2O4进一步转化成无电化学活性的Li2MnO3,这两种相变都会导致电池的不可逆容量损失。 Spinel lithium manganese oxide-LiMn2O4 for lithium ion batteries as cathode material was prepared by high temperature solid-state reaction to investigate electrochemical performance and its chemical changes during charge-discharged cycling between 4.3 and 3.5 V at room temperature, and the chemical reactions after continuously electrochemical cycling at the LiMn2O4 cathodes were described in detail with respect to XRD results combined the Li-Mn-O phase diagram. Results show that the initial specific discharge capacity of LiMn2O4 is 123 mAh/g, and after 200 times cycling, the discharge capacity retains 107 mAh/g. The irreversible capacity fade observed during cycling is attributed, at least partly, to disproportionation reactions of LiMn2O4,and Li2Mn2O4 which is formed at the particle surface of discharged LiMn2O4 electrodes turn to electrochemically inactive Li2MnO3.
出处 《电源技术》 CAS CSCD 北大核心 2004年第5期270-272,共3页 Chinese Journal of Power Sources
关键词 锂离子蓄电池 正极材料 充电过程 放电过程 化学变化 锰酸锂 lithium-ion batteries LiMn2O4 cathode materials chemical changes
  • 相关文献

参考文献10

  • 1OHZUKU T, SAWAI K, HIRAI T. Topotactic two-phase reaction of ruthenium dioxide (mtile) in Lithium nonaqueous cell[J]. J Electrochem Soc, 1990,137(10): 3 004-3 010.
  • 2TARASCON J M, WANG E, SHOKOOHI F K, et al. The spinel phase of LiMn2O4 as a cathode in secondary lithium cells[J]. J Electrochem Soc, 1991,138(10): 2 859-2 864.
  • 3THACKERAY M M. A comment on the structure of thin-film LiMn2O4 electrodes[J]. J Electrochem Soc, 1997, 144(5): L100-L102.
  • 4AMATUCCI G G, BLYR A, SCHMUTZ C, et al. Novel LiMn2O4 based spinels with improved elevated temperature performance in Li-ion batteries [J]. Prog Batterie Battery Mater, 1997, 16: 1-19.
  • 5THACKERAY M M, KOCK A, ROSSOUW M H, et al. Spinel electrodes from the Li-Mn-O system for rechargeable lithium battery applications[J]. J Electrochem Soc, 1992,139(2): 363-366.
  • 6GUMMOW R J, KOCK A, THACKERAY M M. Improved capacity retention in rechargeable 4V lithium / lithium manganese oxide (spinel) cells [J]. Solid State Ionics, 1994,69: 59-67.
  • 7AURBACH D, ZABAN A, SCHLECTER A, et al. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries [J]. J Electrochem Soc, 1995,142(9):2873-2882.
  • 8LIU W, KOWAL K, FARRINGTON G C. Electrochemical characteristics of spinel LiMn2O4-based cathode materials prepared by the pechini process[J]. J Electrochem Soc, 1996, 143(6): L136-L138.
  • 9THACKERAY M M, BRUCE P G, GOODENOUGH J B. Structural characteristics of lithium iron oxides and lithium manganese oxides Lix Fe3O4, Lix Mn3O4, Lix Fe2O3 (0<x<2)[J]. Mater Res Bull,1983, 3:801-804.
  • 10HUNTER J C. Preparation of a new crystal form of manganese dioxide: λ-MnO2 [J]. J Solid State Cbem, 1981, 39(2): 142-147.

同被引文献15

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部