期刊文献+

一种基于SVM分类器的HRRP-ATR方法 被引量:6

HRRP-ATR Based on SVM Classifier
下载PDF
导出
摘要 给出了一种应用统计学习领域最新的支持矢量机 (SupportVectorMachines ,简称SVM )分类器识别高分辨率距离像 (HighResolutionRangeProfile ,简称HRRP)的方法。应用美国空军研究室 (AirForceResearchLaboratory)的MSTAR (Mov ingandStationaryTargetAcquisitionandRecognition)实测数据 ,该方法获得了较满意的识别率。与模板匹配法相比 ,实验结果证明了支持矢量机分类器的有效性 。 In this paper, the recognition of HRRP (High Resolution Range Profile) using SVM (Support Vector Machine) classifier developed from statistical learning theory is presented. Experimented results based on the MSTAR (Moving and Stationary Target Acquisition and Recognition) data sets provided by the US ARFL (Air Force Research Laboratory ) are provided to illustrate the performance of the proposed approach.
作者 高倩 吴仁彪
出处 《现代雷达》 CSCD 北大核心 2004年第5期20-23,共4页 Modern Radar
基金 国家杰出青年科学基金 ( 60 3 2 5 10 2 ) 国家自然科学基金 ( 60 2 72 0 49 60 3 72 0 3 4)资助课题
关键词 支持矢量机 高分辨率距离像 自动目标识别 SVM分类器 HRRP-ATR方法 support vector machine, high resolution range profile, automatic target recognition
  • 相关文献

参考文献11

  • 1Williams R, Westerkamp J, Gross D.and Palomino A.Automatic target recognition of time critical moving targets using range resolution (HRR) radar.IEEE Transaction on Aerospace and Electronics Systems magazine, 2000, 15(3): 37~43
  • 2Richard A Mithchell, John J Wisterkamp.Robust Statistical Feature Based Aircraft Identification.IEEE Transaction on Aerospace and Electronics Systems magazine, 1999, 35(3): 1077~1094
  • 3Brian M Huether, Steven C Gustafson, Randy P Broussard.Wavelet Preprocessing for High Range Resolution Radar Classification.IEEE Transaction on Aerospace and Electronics Systems magazine, 2001, 37(4): 1321~1332
  • 4边肇奇,等.模式识别(第二版).北京:清华大学出版社,2000
  • 5Bernhard Sch lkopf, Kah-kay Sung.Comparing Support Vector Machine with Gaussian Kernels to Radial Basis Function Classifiers.IEEE Transactions on Signal Processing, 1977,45(11):2758:2765
  • 6何昕,刘重庆,李介谷.基于支撑向量机的文本无关的说话人识别系统[J].计算机工程,2000,26(6):61-63. 被引量:8
  • 7张艳宁,郑江滨,候云舒,赵荣椿.基于SOM和SVM的遥感图像目标识别[J].系统工程与电子技术,2002,24(7):9-11. 被引量:9
  • 8Qun ZHao, Jose C Principe.Support Vector Machines for SAR Automatic Target Recognition.IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2):643~654
  • 9Klaus-Robert Müller.An Introduction to kernel-Based Learning Algorithms.IEEE Transactions on Neural Networks, 2001, 12(2):181~201
  • 10涂志江,刘国岁.基于最佳鉴别准则的目标识别方法[J].现代雷达,2000,22(1):39-43. 被引量:2

二级参考文献11

  • 1[1]Niblack W,Barber R,Equitz W,et al.The Qbic Project:Querying Image by Content Using Color,Texture,and Shape[R].SPIE,1993,1908:173-187.
  • 2[2]Chapelle O,Haffner P,Vapnik V N.Support Vector Machines for Histogram-based Image Classification[J].IEEE Trans.on Neural Networks,1999,10(5):1055-1064.
  • 3[3]Kohonen T.Self-Organizing Maps[M].NY:Springer-Verlag,1995.
  • 4[4]Vapnik V N.The Nature of Statistical Learning Theory[M].NY:Springer-Verlag,1995.
  • 5[5]Cortes C,Vapnik V.Support Vector Networks[J].Machine Learning,1995,20:273-297.
  • 6[6]Scholkopf B,Sung K,Burges C,et al.Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Function Classifiers[J].A.I.Memo 1559,MIT,1996.
  • 7[7]Burges C J C.A Tutorial on Support Vector Machines for Pattern Recognition[J].Data Mining and Knowledge Discovery,1998,2(2):955-974.
  • 8Hong Z Q,Pattern Recognition,1991年,24卷,4期,317页
  • 9Tian Q,Optical Engineering,1986年,25卷,7期,834页
  • 10Liu Ke,Pattern Recognition,25卷,7期,731页

共引文献16

同被引文献50

引证文献6

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部