期刊文献+

基于神经网络的组合导航系统状态估计 被引量:12

State Estimation of Integrated Navigation System Based on Neural Network
下载PDF
导出
摘要 在干扰大的外界环境中,传统滤波法对组合导航系统进行状态估计的精度难以满足要求,为此提出了引入Elman神经网络。描述了它的状态估计的设计方法,对如何获取训练样本及网络的训练算法给予了详细的介绍,并把优化后的算法与原有方法进行仿真对比。最后以INS/GPS组合导航系统为例,分别用传统滤波法与Elman神经网络法进行状态估计。仿真结果证明了该法的有效性和实用性。 To estimate the state of integrated navigation system in serious interferential surroundings, the conventional filtering algorithms cant satisfy precision requirements. The paper introduces Elman network to resolve this problem and explains its designing means for estimating states. Its training algorithm is analyzed in detail and the approach to obtain swatch is also provided. Simulations are made by optimized algorithm and original algorithm. In the end, both the conventional filtering algorithm and the trained Elman network are used to estimate state of INS/GPS integrated navigation system. Simulation results show that the method is valid and practical.
出处 《中国惯性技术学报》 EI CSCD 2004年第2期40-46,共7页 Journal of Chinese Inertial Technology
基金 国家自然基金资助课题(KL0202200201)
关键词 组合导航系统 神经网络 卡尔曼滤波 状态估计 integrated navigation state estimation neural network Kalman filter
  • 相关文献

同被引文献137

引证文献12

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部