期刊文献+

浙江省花岗岩交代变质过程中一些矿物的作用(英文) 被引量:1

THE ROLE OF SOME MINERALS DURING GRANITE METASOMATISM IN ZHEJIANG PROVINCE,SOUTHEAST OF CHINA
下载PDF
导出
摘要 对浙江省内花岗质岩石样品薄片在偏光显微镜下鉴定,试图建立矿物学与微构造之间的联系,确定裂隙分布矿物学控制因素,并调查微裂隙与交代变质蚀变之间的关系.薄片显示花岗质岩石主要由斜长石、钾长石、石英和云母组成.其中长石和云母解理发育,在结构上更易于变形,而石英则表现为均质特征,其中的裂隙比其他矿物(长石、云母)中更发育.这些解理和裂隙接纳流体进入并造成交代变质.在此过程中,黑云母被白云母交代而形成石英并释放出钾,这些钾进而交代斜长石而形成钾长石.值得关注的是,一些矿物颗粒边界显现出很少的变形,如钾长石-斜长石边界和石英-石英边界呈现较低程度的颗粒间碎裂,并变得可能比以前更坚硬,这是因为重结晶作用和交代作用胶结了以前的碎裂结构.最后,变形作用影响到整个岩石,为流体通过岩石打开通道,进一步的微裂隙对大规模钾交代变质作用的发生至关重要.研究区内花岗岩的矿物学及裂隙特征表明,交代作用可以作为可靠的构造标志,用以恢复浙江花岗岩现代和古裂隙的几何特征. To study the effects of some minerals in coarse grained granite specimen during metasomatic process, firstly, we have observed fracture localization and propagation by using polarized light microscope that allows us to observe the association between microfracture types and mineralogical composition. The samples in this study were collected from granitic rocks in Zhejiang province, Southeast of China. Thin sections are made and examined with the aid of polarized light microscope. This research tries to make link between mineralogical composition and microstructures to determine the controls, if any, of minerals on fracture distribution; and to investigate the relationships between the microfractures and the metasomatic alteration. The results of thin section observations showed that feldspars, quartz and biotite are the main constituents of granites and we demonstrated that the mechanisms governing the metasomatic alteration of rock also lead to the development of alkali characteristic of the granite in the study area.
出处 《地质与资源》 CAS 2004年第1期1-5,F003,F004,共7页 Geology and Resources
基金 ThisstudywassupportedbytheChinaScholarshipCouncil(GrantNo.160) NationalNatureScienceFoundationofChina(GrantNo.400722006) theKeyTaskProjectofScienceandTechnologyofLiaoningProvince(GrantNo.2001230001)
关键词 花岗岩 矿物学 交代变质 蚀变 流体 microcrack mineralogical composition Zhejiang granite metasomatic alteration
  • 相关文献

参考文献16

  • 1Simmons G, Richer D. Microcracks in rocks[A]. In: Strens R G J,ed.The Physics and Chemistry of Minerals and Rocks[C]. Wiley, Toronto,1976. 105-137.
  • 2Tapponier P, Brace W F. Development of stress-induced micro cracks in Westerly granite[J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr.,1976, 13 (4): 103-112.
  • 3Kranz R L. Crack-crack and crack-pore interactions in stressed granite [J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1979, 16 (1):37-47.
  • 4Hadley K. Comparison of calculated and observed crack densities and seismic velocities in Westerly granite[J]. J. Geophys. Res., 1976, 81:3484-3494.
  • 5Friedman M, Perkins R D, Green S J. Observation of brittle-deformation features at the maximum stress of Westerly granite and Solenhofen limestone[J]. Int. J. Rock Mech. Min. Sci., 1970, 7: 297-306.
  • 6Lloyd G E, Knipe R J. Deformation mechanisms accommodating faulting of quartzite under upper crustal conditions[J]. J. Struct. Geol.,1992, 14: 127-143.
  • 7Shelley D. Igneous and metamorphic rocks under the microscope [M]. 1993. 445.
  • 8Fitzgerald J D, Stuntiz H. Deformation of granitoids at low metamorphic grade. I: reactions and grain size reduction[J]. Tectonophysics,1993, 221: 269-297.
  • 9Kranz R L. Microcrack in rocks: a review[J]. Tectonophysics, 1983,100 (1-3): 449-480.
  • 10HU Bin. Features of Lixi granitic complex body and its genetic type discussion in South-Eastern Zhejiang[J]. Zhejiang Geology, 1997:47-54.

同被引文献13

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部