期刊文献+

Positive Steady States of a Competitor-Competitor-Mutualist Model

Positive Steady States of a Competitor-Competitor-Mutualist Model
原文传递
导出
摘要 In this paper we deal with the positive steady states of a Competitor-Competitor-Mutualist modelwith diffusion and homogeneous Dirichlet boundary conditions.We first give the necessary conditions,and thenestablish the sufficient conditions for the existence of positive steady states. In this paper we deal with the positive steady states of a Competitor-Competitor-Mutualist modelwith diffusion and homogeneous Dirichlet boundary conditions.We first give the necessary conditions,and thenestablish the sufficient conditions for the existence of positive steady states.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2004年第1期53-57,共5页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China (No.19831060) the"333"Project of JiangSu Province
关键词 Positive steady states Competitor-Competitor-Mutualist model Positive steady states Competitor-Competitor-Mutualist model
  • 相关文献

参考文献15

  • 1Blat, J., Brown, K.J. Global bifurcation of positive solutions in some systems of elliptic equations. SIAMJ. Math. Anal. 17(6): 1339-1352 (1986).
  • 2Casal, A., Eilbeck, J.C.. Lopez-Gomez. ,L. Existence and uniqueness of coexistence states for a predator-prey model with diffusion. Diff. Int. Eqns.. 7:411-439 (1994).
  • 3Dancer. E.N. A counterexample of competing species equations. Diff. Int. Eqns., 9:239-246 (1996).
  • 4Delgado, M., Lopez-Gomez. J., Suarez. A. On the symbiotic Lotka-Volterra model with diffusion and transport effects. J. Differential Equations. 160:321-349 (2000).
  • 5Du, Y.H. Uniqueness. multiplicity and stability for positive solutions of a pair of reaction-diffusion equations,Proc. Roy. Soc. Edinburgh, A126:777-809 (1996).
  • 6Du, Y.H. Lou, Y. Some uniqueness and exacl multiplicity results for a predator-prey model. Trans. Amer.Math, Soc.. 349(6): 2443-475 (1997).
  • 7Du, Y.H., Lou. Y. Qualitative behaviour of positive solutions of a predator-prey model: effects of saturation.Proc. Roy. Soc. Edinburgh, A131:321-349 (2(101).
  • 8Lakog, N. Existence of steady-state solutions for a one-predator-two-prey system. SIAM d. Math. Anal.,21(3): 647-659 (1990).
  • 9Leung, A. Equilibria and stabilities for competing species, reaction-diffusion equations with Dirichlet boundary data. J. Math. Anal. Appl., 73:204-218 (1980).
  • 10Li. L. Coexistence theorems of steady-states for predator-prey interacting systems. Trans. Amer. Math.Soc.. 305:143-166 (1988).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部