期刊文献+

Analyses of Bifurcations and Stability in a Predator-prey System with Holling Type-Ⅳ Functional Response 被引量:15

Analyses of Bifurcations and Stability in a Predator-prey System with Holling Type-Ⅳ Functional Response
原文传递
导出
摘要 In this paper the dynamical behaviors of a predator-prey system with Holling Type-Ⅳ functionalresponse are investigated in detail by using the analyses of qualitative method,bifurcation theory,and numericalsimulation.The qualitative analyses and numerical simulation for the model indicate that it has a unique stablelimit cycle.The bifurcation analyses of the system exhibit static and dynamical bifurcations including saddle-node bifurcation,Hopf bifurcation,homoclinic bifurcation and bifurcation of cusp-type with codimension two(ie,the Bogdanov-Takens bifurcation),and we show the existence of codimension three degenerated equilibriumand the existence of homoclinic orbit by using numerical simulation. In this paper the dynamical behaviors of a predator-prey system with Holling Type-Ⅳ functionalresponse are investigated in detail by using the analyses of qualitative method,bifurcation theory,and numericalsimulation.The qualitative analyses and numerical simulation for the model indicate that it has a unique stablelimit cycle.The bifurcation analyses of the system exhibit static and dynamical bifurcations including saddle-node bifurcation,Hopf bifurcation,homoclinic bifurcation and bifurcation of cusp-type with codimension two(ie,the Bogdanov-Takens bifurcation),and we show the existence of codimension three degenerated equilibriumand the existence of homoclinic orbit by using numerical simulation.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2004年第1期167-178,共12页 应用数学学报(英文版)
基金 Supported by Chinese Academy of Sciences (KZCX2-SW-118) Supported by the NNSF of China (No.10071027 No.10231020)
关键词 Predator-prey system Limit cycle Bogdanov-Takens bifurcation Predator-prey system Limit cycle Bogdanov-Takens bifurcation
  • 相关文献

参考文献17

  • 1Andronov, A., Leontovich, E.A., Gordon, I.I., Maier, A.G. Theory of Bifurcations of Dynamical Systems on a Plane. Israel Program for Scientific Translations, Jerusalem, 1971.
  • 2Andrews, J.F. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng, 10:707-723 (1968).
  • 3Bogdanov, R. Bifurcation of a limit cycle for a family of vector fields on the plane. Selecta Math. Soviet.,1:373-388 (1981).
  • 4Bogdanov, R. Versal deformations of a singular point on the plane in the case of zero eigenvalues. Selecta Math. Soviet., 1:389-421 (1981).
  • 5Chow, S.N., Hale, J.K. Methods of Bifurcatioa Theory. Springer-Verlag, New York, Heidelbeg, Berlin,1982.
  • 6Collings, J.B. The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model. J. Math. Biol., 36:149-168 (1997).
  • 7Freedman, H.I., Wolkowicz, G.S,K. Predator-prey systems with group defence: the paradox of enrichment revisited, Bull. Math. Biol., 48:493-508 (1986).
  • 8Holling, C.S. The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomolog. Soc. Can, 45:3-60 (1965).
  • 9Mischaikow, K., Wolkowicz, G.S.K. A predator-prey system involving group defense: a connection matrix approach. Nonlinear Anal., 14:955-969 (1990).
  • 10Rosenzweig, M.L. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time.Science, 171:385-387 (1971).

同被引文献45

引证文献15

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部