摘要
利用重合度理论研究一类二阶泛函微分方程x″(t)+f(t,xt)x^'n+β(t)g(x(t-τt)))=p(t)的周期解问题,本文得到了周期解存在的新的结果.
In this paper, by using the theorem of coincidence degree, the authors study
periodic solution to a class of second order functional diffrential equation x'(t) +
f(t, x_t)x'' +β(t)g(x(t-T(t))) =p(t). Some new results for the existence of the periodic
solution are obtained.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2004年第3期569-578,共10页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金(10371006)
高校博士点专项基金(199000722)
关键词
泛函微分微分方程
周期解
重合度理论
Functional differential equation
Periodic solution
Coincidence degree